دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: István Z. Kiss, Joel C. Miller, Péter L. Simon سری: ISBN (شابک) : 9783319508061 ناشر: Springer سال نشر: 2017 تعداد صفحات: 418 زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Mathematics of Epidemics on Networks. From Exact to Approximate Models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات اپیدمی ها در شبکه ها. از مدل های دقیق تا تقریبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی افزودنی جدید هیجانانگیز به حوزه علوم شبکه ارائه میکند که دارای پیوند قویتر و روشمندتر مدلها با منشأ ریاضی آنها است و چگونگی ارتباط این مدلها با یکدیگر را با تمرکز ویژه بر گسترش همهگیری در شبکهها توضیح میدهد. محتوای کتاب در رابط نظریه گراف، فرآیندهای تصادفی و سیستم های دینامیکی است. نویسندگان تصمیم گرفتند سهم قابل توجهی در بستن شکاف بین توسعه مدل و ریاضیات پشتیبان داشته باشند. این کار توسط: خلاصهسازی و ارائه جدیدترین فناوریها در مدلسازی اپیدمیها در شبکهها با نتایج و مدلهای قابل استفاده آسان در سراسر کتاب نشان داده شده است. ارائه روش های مختلف ریاضی برای فرموله کردن مدل های دقیق و قابل حل. شناسایی پیوندهای مشخص بین مدل های تقریبی و نمایش ریاضی دقیق آنها. ارائه سلسله مراتب مدل و برجسته کردن واضح پیوندهای بین مفروضات مدل و پیچیدگی مدل؛ ارائه منبع مرجع برای دانشجویان مقطع کارشناسی ارشد و همچنین دانشجویان دکتری، پژوهشگران فوق دکتری و کارشناسان دانشگاهی که درگیر مدلسازی فرآیندهای تصادفی در شبکهها هستند. ارائه نرم افزاری که می تواند مدل های معادلات دیفرانسیل را حل کند یا به طور مستقیم اپیدمی ها را در شبکه ها شبیه سازی کند. این کتاب مملو از نمودارها، مثالها، تمرینهای آموزنده و دسترسی آنلاین به الگوریتمهای شبیهسازی و کدهای قابل استفاده، طیف گستردهای از خوانندگان از پیشینهها و سطوح علمی مختلف را به خود جذب میکند. این کتاب درسی که برای دانشآموزان با یا بدون پیشزمینه قوی در ریاضیات مناسب است، میتواند مبنای یک دوره پیشرفته کارشناسی یا کارشناسی ارشد در ریاضیات و سایر بخشها باشد.
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.
Preface About the Authors Contents 1 Introduction to networks and diseases 1.1 Mathematical modelling of epidemics: the basics 1.1.1 Deterministic epidemic models: compartmentalSIS & SIR 1.1.2 Stochastic epidemic models: compartmental SIS & SIR 1.1.3 Linking stochastic and deterministic compartmentalmodels 1.2 Networks 1.2.1 Basic tools for representing networks 1.2.2 Characterising networks 1.2.3 Network-generating algorithms 1.3 Disease spread on networks: the main topic of the book 1.3.1 Stochastic simulation 1.3.2 Mathematical modelling 1.3.3 Topics covered and not covered in the book 2 Exact propagation models on networks: top down 2.1 An introductory example 2.2 Continuous-time Markov chains 2.3 Master equations for arbitrary networks 2.3.1 State space and transition rates for arbitrary dynamics 2.3.2 State space and transition rates for binary dynamics 2.3.3 Master equations for binary dynamics 2.3.4 Master equations for SIR dynamics 2.4 Lumping 2.4.1 Partition of the state space 2.4.2 A motivating example 2.4.3 Lumping of linear systems 2.4.4 The use of graph symmetries to lump a binary dynamic network model 2.5 Applications of lumping 2.5.1 Lumping for some small networks 2.5.2 Lumping for some classes of networks of arbitrary size 2.6 Conclusions and outlook 3 Propagation models on networks: bottom-up 3.1 Illustrative examples 3.1.1 Closures: a succinct overview 3.2 General bottom-up model 3.2.1 SIS dynamics 3.2.2 SIR dynamics 3.3 Differential inequalities and a comparison theorem for ODEs 3.4 Closures at the level of pairs and triples for SIS dynamics 3.4.1 The individual-based model 3.4.2 The individual-based model overestimates the true probability of nodes being infected 3.4.3 Steady states of the individual-based model 3.4.4 Stability of the steady states of the individual-basedmodel 3.4.5 Relation between the exact, individual-based and classic compartmental SIS model 3.4.6 Closures at the level of triples for SIS dynamics and numerical examples 3.5 Closures at the level of pairs for SIR dynamics 3.5.1 The individual-based SIR model 3.5.2 The final epidemic size based on the individual-based SIR model 3.5.3 SIS: an upper bound on SIR 3.6 General closures at higher levels for SIR dynamics for networks with and without loops 3.6.1 The relationship between closures and structural network properties 3.6.2 Feasibility of generalised closure and examples 3.6.3 Exact, numerically computable model on tree graphs 3.6.4 Numerical examples of the performance of closed systems for SIR disease 3.7 Conclusions and outlook 4 Mean-field approximations for homogeneous networks 4.1 Exact, unclosed models 4.1.1 The variables of mean-field models: population levelcounts 4.1.2 Exact differential equations for the singles and pairs 4.2 Closures at the pair and triple level and the resulting models 4.2.1 Closures 4.2.2 Closed systems 4.2.3 Clustered pairwise model 4.3 Analysis of the closed systems 4.3.1 SIS homogeneous mean-field equations at the single level 4.3.2 SIR homogeneous mean-field equations at the single level 4.3.3 SIS homogeneous pairwise equations 4.3.4 SIR homogeneous pairwise equations 4.4 Basic reproductive ratio 4.5 Comparison of mean-field models to simulation and exact master equations 4.5.1 Comparison to exact master equations, dependence on system size and infection parameters 4.5.2 Comparison to simulation, dependence on networkstructure 4.6 Derivation of mean-field models from master equations 4.6.1 Derivation of the homogeneous mean-field model at the single level for the SIS epidemic 4.6.2 Mean-field models for arbitrary dynamics 4.7 Detailed analytical study of pairwise models 4.7.1 Homogeneous SIS pairwise model 4.7.2 Homogeneous SIR pairwise model 4.8 Conclusions and outlook 5 Mean-field approximations for heterogeneous networks 5.1 Exact, unclosed models 5.2 Closures at the pair and triple level and the resulting models 5.2.1 Closures 5.2.2 Closed systems 5.2.3 Compact pairwise model 5.2.4 Super-compact pairwise model 5.3 Analysis of the closed systems 5.3.1 SIS heterogeneous mean-field model at the single level 5.3.2 SIR heterogeneous mean-field model at the single level 5.3.3 SIS compact pairwise model 5.4 Comparison of models to simulation 5.5 Detailed analytical study of the mean-field models 5.5.1 Heterogeneous SIS mean-field model at the single level 5.5.2 Heterogeneous SIR mean-field model at the single level 5.5.3 Compact pairwise SIS model 5.6 Effective degree models 5.6.1 Basic effective degree model 5.6.2 Compact effective degree model 5.7 Conclusions and outlook 6 Percolation-based approaches for disease modelling 6.1 Typical SIR outbreaks 6.1.1 Dependence on network size 6.1.2 Dependence on transmission probability 6.1.3 Epidemic definitions for finite networks 6.1.4 Epidemic definition in the infinite network limit 6.2 Epidemic probability in Configuration Model networks 6.2.1 Discrete-time Markovian model 6.2.2 Continuous-time Markovian model 6.2.3 Non-Markovian model 6.3 Percolation and SIR disease 6.3.1 Properties of bond percolation 6.3.2 Bond percolation and discrete-time SIR disease 6.3.3 Directed percolation and continuous time SIR disease 6.3.4 Non-Markovian disease spread 6.4 Epidemic size in Configuration Model networks 6.4.1 Discrete-time Markovian model 6.4.2 Continuous-time Markovian model 6.4.3 Non-Markovian model 6.5 Edge-based compartmental modelling: epidemic dynamics 6.5.1 Epidemic size with many initially infected nodes 6.5.2 Predicting time evolution of the epidemic 6.6 SIS disease 6.7 Conclusions and outlook 7 Hierarchies of SIR models 7.1 The models and their assumptions 7.1.1 Mean-field models 7.1.2 Improved models 7.2 Hierarchy 7.2.1 Non-equivalence of PW, ED and EBCM models 7.3 Equivalence of compact ED, compact PW and EBCM models 7.3.1 Equivalence of compact ED and EBCM models 7.3.2 Equivalence of compact PW and EBCM model 7.4 Limiting approximations 7.4.1 Reduction of EBCM model to HetMF model 7.4.2 Reduction of HetMF model to HomMF model 7.5 Conclusions and outlook 8 Dynamic and adaptive networks 8.1 Link-conserving rewiring models 8.1.1 Pairwise model 8.1.2 Effective degree model 8.2 Random link activation and deletion models 8.2.1 Pairwise model 8.2.2 Effective degree model 8.3 Link-status-dependent link activation and deletion models 8.3.1 Oscillating epidemics in a dynamic network model 8.3.2 Bifurcation analysis of the pairwise model 8.3.3 Simulation-based bifurcation analysis and trackingof the oscillatory cycle 8.4 Link deactivation and activation on fixed networks 8.5 EBCM-based approach 8.5.1 SIR disease in dynamic degree-preserving networks 8.6 Conclusions and outlook 9 Non-Markovian epidemics 9.1 Pairwise model with multiple stages of infection 9.1.1 Extended compartmental SIR model 9.1.2 Pairwise model 9.2 Pairwise model for epidemics with non-Markovian recoverytimes 9.2.1 Derivation of the standard compartmental and pairwisemodel 9.2.2 Dynamics in time and final epidemic size 9.2.3 Pairwise model for a general recovery process 9.3 EBCM approach to non-Markovian dynamics 9.4 Conclusions and outlook 10 PDE limits for large networks 10.1 Model, methods and motivation 10.1.1 Aims and methods of investigation 10.1.2 Motivation for the model: binary network dynamics 10.2 General results for one-step processes 10.2.1 Differential equations for the moments and for the PGF 10.2.2 Fokker–Planck equation 10.3 One-step processes with linear coefficients 10.3.1 Differential equation for the first moment 10.3.2 Probability-generating function of the distribution 10.3.3 Fokker–Planck equation 10.3.4 Fokker-Planck equation for constant coefficients:random walk 10.4 Mean-field equations for the moments 10.4.1 The case of quadratic coefficients 10.4.2 Polynomial coefficients 10.4.3 Upper and lower bounds for the expected value 10.4.4 Higher order closure based on an a priori distribution 10.5 PDE approximation for the distribution 10.5.1 The PGF for polynomial coefficients 10.5.2 First order PDE approximation 10.5.3 Fokker–Planck equation 10.6 The accuracy of the mean-field and Fokker-Planckapproximations 10.6.1 Relation of the Fokker–Planck and mean-field equations 10.6.2 Mean-field equation 10.6.3 Fokker–Planck equation 10.7 Conclusions and outlook 11 Disease spread in networks with large-scale structure 11.1 A sample social network 11.1.1 SIR epidemics 11.1.2 SIS epidemics 11.2 Small-world networks 11.2.1 SIR epidemics 11.2.2 SIS epidemics 11.3 Preferential attachment networks 11.3.1 SIR epidemics 11.3.2 SIS epidemics 11.4 Conclusions and outlook Appendix A Stochastic simulation of epidemics A.1 Efficient simulations A.1.1 Gillespie algorithm A.1.2 Event-driven algorithm A.2 Time shifting of simulation results References Index