دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Martin Carlsen, Ingvald Erfjord, Per Sigurd Hundeland سری: ISBN (شابک) : 3030347753, 9783030347758 ناشر: سال نشر: تعداد صفحات: 453 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Mathematics Education in the Early Years: Results from the POEM4 Conference, 2018 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آموزش ریاضیات در سالهای اولیه: نتایج کنفرانس POEM4، 2018 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Mathematics Education in the Early Years Introduction Children’s Mathematical Reasoning Early Years Mathematics Teaching Parents’ Role in Children’s Mathematical Development Contents About the Editors Chapter 1: Early Years Mathematics: Semiotic and Cultural Mediation 1.1 Introduction 1.1.1 What Does Early Years Mathematics Mean? 1.1.2 My Personal Trajectory 1.2 Some Outcomes of the Preschool Program 1.2.1 The Giant Slavonic Abacus 1.2.1.1 Task 1: The First Impact (The Narrator’s Voice) 1.2.1.2 Task 2: The Structure of the Artifact (The Constructor’s Voice) 1.2.1.3 Task 3: The Use of the Artifact (The User’s Voice) 1.2.1.4 Task 4: The Justification for Use (The Theoretician’s Voice) 1.2.1.5 Task 5: New Problems (The Problem Poser and Solver’s Voice) 1.2.2 The Time Tube 1.2.3 Semiotic Mediation at the Preschool Level 1.3 The Shift to Toddler Centers (and to Prelinguistic Kids) 1.3.1 From Semiotic Mediation to Cultural Mediation 1.3.2 The Newborn Experience in a Cultural Context 1.3.3 Vygotsky’s Hints to Non-Verbal Mediation: The Inner Visual Field 1.3.4 Vygotsky’s Analysis of the Pointing Gesture 1.3.5 A Replica of a Classical Experiment: Learning to Drink from a Cup 1.3.6 The Effects of Social Relationships 1.4 Concluding Remarks References Chapter 2: Young Children’s Early Mathematical Competencies: The Role of Mathematical Focusing Tendencies 2.1 Introduction 2.2 SFON 2.3 SFONS 2.4 SFOR 2.5 SFOP 2.6 Conclusion and Discussion 2.6.1 Conceptual Issues 2.6.2 Measurement Issues 2.6.3 Developmental Issues 2.6.4 Promotion of Mathematical Focusing Tendencies References Chapter 3: Play and the Production of Subjectivities in Preschool 3.1 Introduction 3.2 The Production of Individuals In and Through Play 3.3 Semiotic Systems of Cultural Signification 3.4 Being, Becoming, and Subjectivity 3.5 Playing a Mathematical Game 3.6 The Inscription of the Children in the Social World 3.6.1 The Role of Rules 3.6.2 The Role of the Mathematical Content 3.6.3 The Teacher as the Embodiment of an Ideal Form 3.7 Synthesis and Concluding Remarks References Part I: Children’s Mathematical Reasoning Chapter 4: Copying and Comparing Repeating Patterns: Children’s Strategies and Descriptions 4.1 Introduction 4.2 Duplicating, Copying, and Comparing Patterns 4.3 Methodology 4.3.1 Data Analysis 4.4 Findings 4.4.1 Copying and Comparing AB-Structured Necklaces 4.4.2 Copying and Comparing AAB-Structured Necklaces 4.4.3 Comparing the AB and AAB Patterns 4.5 Discussion References Chapter 5: Patterning as a Mathematical Activity: An Analysis of Young Children’s Strategies When Working with Repeating Patterns 5.1 Introduction 5.2 Repeating Patterns and Mathematics 5.3 Patterning Strategies 5.4 Method 5.4.1 Setting and Participants 5.4.2 Tasks and Materials 5.4.3 Data Collection and Analysis 5.5 Results 5.6 Discussion References Chapter 6: Preschoolers’ Ways of Using Fingers in Numerical Reasoning 6.1 Background and Aim 6.2 Research Review 6.3 The Study 6.4 Analysis 6.5 Results 6.5.1 Fingers as an Image of Numbers 6.5.2 Fingers to Create Numbers of Single Units 6.5.3 Fingers to Visualize the Structure of Numbers 6.6 Conclusions References Chapter 7: Young Children’s Cross-Domain Mapping of Numerosity in Path Navigation 7.1 Introduction and Background 7.2 Theoretical Framework 7.3 Methodology 7.3.1 The Intervention and Case Selection 7.3.2 Procedure of the Navigation Task 7.3.3 Operationalisation and Data Analysis 7.4 Results 7.4.1 General Results 7.4.2 Rich Description of Three Groups of Task Solutions 7.5 Discussion 7.6 Summary and Concluding Remarks References Chapter 8: Mathematical Problem-Solving Visualised in Outdoor Activities 8.1 Introduction 8.2 Theoretical Frameworks About Mathematical Problem-Solving 8.3 Methodology 8.4 Data 8.4.1 A Child-Initiated, Problem-Solving Activity 8.5 Analysis and Discussion 8.5.1 An Analysis and Discussion of the Measurement Understanding 8.5.2 An Analysis and Discussion Using Copley’s Characteristics of an Effective Problem Solver 8.5.3 An Analysis and Discussion Using Polya’s Problem-Solving Stages 8.5.4 An Analysis and Discussion Using the Didaktic Space 8.6 Implication for the Kindergarten Teacher’s Role 8.7 Conclusion References Chapter 9: Making Choices and Explaining Them: An Experiment with Strategy Games in Kindergarten 9.1 Introduction 9.2 Theoretical Framework 9.3 The Teaching Experiment 9.3.1 The Thirteen Buttons Game 9.3.2 The Didactical Choices 9.4 Data Analysis 9.4.1 Phase 1: Introduction to the “Thirteen Buttons Game” 9.4.2 Phase 2. The Discovery of the “Magic Buttons” 9.4.3 Phase 3: The Dinosaur Goes on Holiday 9.5 Conclusion References Chapter 10: Measuring Rice in Early-Childhood Education Activities: A Bridge Across Discrete and Continuous Magnitudes 10.1 Introduction 10.2 Theoretical Background of the Study 10.3 Methodology 10.4 Analyses 10.4.1 Strategies Before Introduction of the Artifacts 10.4.1.1 Evaluation of Numerosity 10.4.1.2 Evaluation of Surface 10.4.1.3 Evaluation of Volume 10.4.2 Strategies with Artifacts 10.5 Conclusions and Future Perspectives References Chapter 11: The Semiotic Resources Children Use in Their Explanations of Hypothetical Situations 11.1 Introduction 11.2 Semiotic Resources and Explanations 11.3 Methodology 11.4 Results 11.4.1 Introducing an Imaginary Layout 11.4.2 Adapting Gestures 11.4.3 Clarifying What Is Discussed 11.4.4 Alternative Support for Deductive Explanations 11.4.5 Explicit Explanation 11.5 Discussion 11.6 Conclusion References Chapter 12: Drawings, Gestures and Discourses: A Case Study with Kindergarten Students Discovering Lego Bricks 12.1 Introduction 12.2 Theoretical Framework 12.3 Research Methodology 12.4 Overview of the Teaching Sequence 12.5 Analysis and Preliminary Results 12.5.1 Different Points of View of Matilde, Laura and Elio 12.5.1.1 Episode 1 12.5.1.2 Episode 2 12.5.1.3 Episode 3 12.6 Conclusions References Chapter 13: Perceiving and Using Structures When Determining the Cardinality of Sets: A Child’s Learning Story 13.1 Introduction 13.2 Role of Structures for Numerical and Arithmetical Development 13.3 Research Question 13.4 Design of the Study 13.4.1 Tasks 13.4.2 Implementation 13.4.3 Aspects of Data Analysis 13.4.4 Data Analysis by the Use of Eye-Tracking Technology 13.4.5 Example from the Data Analysis 13.5 Results of the Learning Story of “Luca” 13.6 Summary and Discussion References Chapter 14: “A Triangle Is Like a Tent”: Children’s Conception of Geometric Shapes 14.1 Introduction 14.2 Theoretical Background 14.2.1 Explaining Shapes 14.2.2 Drawing Shapes 14.2.3 Identifying Shapes 14.2.4 Coherence 14.3 Research Question 14.4 Design of the Study 14.4.1 Tasks 14.4.2 Analysis 14.5 Results 14.5.1 Explaining Shapes 14.5.2 Drawing Triangles 14.5.3 Coherence Between the Children’s Explanations and Drawings 14.5.4 Identifying Circles, Squares, and Triangles 14.5.5 Coherence Between Children’s Explanations and Identifications 14.6 Summary and Discussion 14.7 Conclusion References Chapter 15: Framing Mathematics Teaching with Narratives: The Ambiguity of Goldilocks 15.1 Introduction 15.2 Narratives as Pedagogical Tools 15.3 Methodology 15.4 Two Empirical Examples 15.4.1 Example 1 15.4.2 Example 2 15.5 Content Analysis of the Goldilocks Story 15.5.1 What Mathematical Challenges Does the Story Impose? 15.6 Discussion Appendix: The Story of Goldilocks and the Three Bears References Chapter 16: Kindergarten Teacher’s Knowledge to Support a Mathematical Discussion with Pupils on Measurement Strategies and Procedures 16.1 Introduction 16.2 Theoretical Framework 16.3 Context and Method 16.4 Analysis and Discussion 16.4.1 Episode 1: Ordering by Length Vs. Height 16.4.2 Episode 2: The Magnitude of Length 16.4.3 Final Comments References Chapter 17: The Materialisation of Children’s Mathematical Thinking Through Organisation of Turn-Taking in Small Group Interactions in Kindergarten 17.1 Introduction 17.2 Theoretical Framework 17.3 Methodology 17.4 Results 17.4.1 Segment 1, from Kindergarten 1 (K1) 17.4.2 Segment 2.1, from Kindergarten 2 (K2) 17.4.3 Segment 2.2, from Kindergarten 2 (K2) 17.5 Discussion 17.5.1 The Characterisation of Children’s Turn-Taking: Similarities and Differences in the Three Segments 17.5.2 The Role of Children’s Organisation of Turn-Taking for the Materialisation of Children’s Mathematical Thinking in the Joint Activity References Chapter 18: Mathematical Activity in Early Childhood and the Role of Generalization 18.1 Introduction 18.2 Analysis of Mathematical Activity in Early Years 18.3 Development of Mathematical Ideas and Generalization 18.4 A Teaching Approach Encouraging Generalization 18.5 Closing References Part II: Early Years Mathematics Teaching Chapter 19: Situational Perception in Mathematics (SPiM)—Results of a Cross-Country Study in Austria and Norway 19.1 Introduction 19.2 Situation-Specific Skills: An Essential Part of Kindergarten Teachers’ Competence 19.3 Kindergarten Teachers’ Situational Perception of Mathematics 19.4 Research Questions 19.5 Methods 19.5.1 Sample 19.5.2 Data Collection 19.5.3 Data Analysis and Analytical Process 19.6 Identified Categories from the Analysed Data 19.7 Discussion References Chapter 20: How to Support Kindergarten Children in Spontaneous Measuring Activities 20.1 Background 20.1.1 Measuring 20.1.2 The Knowledge Quartet 20.1.3 The Purpose of Education: Biesta 20.2 Methodology 20.2.1 Limitations of the Study 20.3 Analysis 20.3.1 The Quantitative Data 20.3.2 The Qualitative Data 20.3.3 Relative Heights—Dorothea’s Observation 20.3.4 Who Is Tallest?—Turid’s Observation 20.3.5 Selling Water—Astrid’s Observation 20.3.6 An Empty Cardboard Box—Lina’s Observation 20.3.7 Santa Hats—Lars’s Observation 20.4 Discussion 20.4.1 Reflecting on Practise with the Quartet Knowledge 20.4.2 The Active-Passive Dilemma 20.5 Conclusion References Chapter 21: Kindergarten Teachers’ Stories About Young Children’s Problem Posing and Problem Solving 21.1 Introduction 21.2 Methodology 21.3 Results 21.3.1 Goldilocks and the Three Bears 21.3.2 Train Crash 21.3.3 Counting Orange Boats 21.3.4 Packing the Police Car 21.4 Discussion 21.5 Conclusion References Chapter 22: ‘You Are Already Bigger Than the Giraffe!’—The Use of Adjectives in Measurement Activities in Kindergarten 22.1 Introduction 22.2 Measuring Length and Weight 22.3 Learning Opportunities: Adjectives 22.4 Research Design and Analysing Methods 22.5 Analysis and Interpretation of Empirical Data 22.6 Empirical Examples for Learning Opportunities 22.7 Conclusion References Chapter 23: The Complexity of Teaching Mathematics in Kindergarten: A Case Study and Conceptualization 23.1 Introduction 23.2 Theoretical Background 23.3 Design of the Study 23.4 Tasks of Teaching Mathematics in Kindergarten 23.4.1 Initiating Mathematical Discussions 23.4.2 Responding to Unexpected Questions 23.4.3 Dealing with Wrong Answers 23.4.4 Using Representations 23.4.5 Positioning Children as Valuable Contributors 23.4.6 Asking Productive Mathematical Questions 23.5 Discussion 23.6 Conclusion References Part III: Parents’ Role in Children’s Mathematical Development Chapter 24: Parents’ Valuing of Mathematics for Young Children 24.1 Introduction 24.2 Theoretical Perspective 24.2.1 Narrative Approach to the Learning of Mathematics 24.3 Methodology 24.3.1 Analysis of the Data 24.4 Results 24.4.1 Yahtzee and Ludo, the Value of Learning Numbers 24.4.2 Everyday Activities, the Value of Learning Counting Skills 24.4.3 Length, Volume, Time, and the Value of Learning Measurement Skills 24.4.4 Money and the Valuing of Equivalence 24.5 Discussion 24.6 Conclusion References Chapter 25: “Pedagogical” Mathematics During Play at Home: An Exploratory Study 25.1 Introduction 25.2 Theoretical Framework 25.3 Background Literature 25.4 Method 25.4.1 Data Sources 25.5 Results 25.5.1 Establishing the Mathematics Goal 25.5.2 Sustaining the Mathematics Goal 25.5.3 Addressing Each Child’s Role in Play-Based Mathematics 25.5.4 Beyond Pedagogical Moves: Mother-as-Teacher and Funds of Knowledge 25.6 Conclusion Appendix References Index