دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Joseph A. Gallian (editor)
سری: Dolciani Mathematical Expositions
ISBN (شابک) : 0883853493, 9780883853498
ناشر: American Mathematical Society
سال نشر: 2010
تعداد صفحات: 342
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Mathematics and Sports به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضی و ورزش نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
cover copyright page title page Preface Contents I Baseball Sabermetrics: The Past, the Present, and the Future Jim Albert 1.1 Introduction 1.2 Measuring Batting 1.3 Measuring Pitching 1.4 Measuring Fielding 1.5 New Measurements, New Data and Measures of Performance 1.6 Further Reading About the Author Surprising Streaks and Playoff Parity: Probability Problems in a Sports Context Rick Cleary 2.1 Problem 1: Rare Events Example 1: Four homers in a row Example 2: A streak of winless opponents 2.2 Problem 2: Playoff Series Length References About the Author Did Humidifying the Baseball Decrease the Number of Homers at Coors Field? Howard Penn 3.1 Introduction 3.2 The Numbers 3.3 A Useful Statistic 3.4 Comparing the two sets of data 3.5 Summary of Conclusions 3.6 Exercises References About the Author Streaking: Finding the Probability for a Batting Streak Stanley Rothman and Quoc Le 4.1 Introduction 4.2 A recursive function to calculate the probability of a player having a 56-game hitting streak at some point in a season 4.3 A non-recursive piecewise function, NR(n), to calculate the probability of a player having a 56-game hitting streak at some point in a season 4.4 The Error = |R(n) - NR(n)| 4.5 Generalizing the concept of a streak 4.5.1 Definitions 4.5.2 Inputs and calculations 4.5.3 Each Individual plate appearance is a game 4.5.4 Each Individual At-Bat is a Game 4.6 Comparing Ted Williams’ 84-game consecutive on-base streak to Joe DiMaggio’s 56-game consecutive hitting streak 4.7 These two streaks evaluated for other great hitters 4.8 Conclusion References About the Authors II Basketball Bracketology: How can math help? Tim Chartier & Erich Kreutzer & Amy Langville & Kathryn Pedings 5.1 Introduction 5.2 Colley Method 5.3 Massey Method 5.4 Weighting Methods 5.4.1 Linear weighting and the Colley method 5.4.2 Linear weighting in the Massey method 5.4.3 Alternative weightings — when life isn’t linear 5.5 2009 Results 5.6 Concluding Remarks References About the Authors Down 4 with a Minute to Go G. Edgar Parker 6.1 Shoot the 3 6.2 Shoot the “easy” two References About the Author Jump Shot Mathematics Howard Penn 7.1 Angle of elevation 60 degrees 7.2 Angle of elevation 30 degrees 7.3 Varying the distance 7.4 Varying the height References About the Author III Football How Deep Is Your Playbook? Tricia Muldoon Brown and Eric B. Kahn 8.1 Introduction 8.2 The Game of Football and Mathematics 8.3 Counting the Formations The 3-4 Defense The 4-3 Defense The Nickel Defense The Dime Defense 8.4 Conclusion About the Authors A Look at Overtime in the NFL Chris Jones 9.1 Introduction 9.2 Game Data 9.3 Analyzing the current system 9.4 An alternative proposal 9.5 Conclusion About the Author Extending the Colley Method to Generate Predictive Football Rankings R. Drew Pasteur References Appendix Top 25 ranking, at the end of the 2008 season, by this method About the Author When Perfect Isn\'t Good Enough: Retrodictive Rankingsin College Football R. Drew Pasteur References About the Author Appendix Compilation of various rankings IV Golf The Science of a Drive Douglas N. Arnold 12.1 The double-pendulum approximation of the swing 12.2 The impact of the club head and the ball 12.3 The ball’s flight References About the Author Is Tiger Woods a Winner? Scott M. Berry G.H. Hardy\'s Golfing Adventure Roland Minton 14.1 Hardy’s Golf Problem 14.2 Hardy’s Analysis 14.3 Two Moments 14.4 Stroke Play 14.5 Skins Game 14.6 Tournament Golf 14.7 Handicaps 14.8 Laurels to Hardy References About the Author Tigermetrics Roland Minton 15.1 How many putts do the pros make? 15.2 Is Tiger Woods the best putter on tour? 15.3 What is a reasonable system for ranking putters? 15.4 Who is the best at hitting irons from the fairway? 15.5 Is there a hidden flaw in Tiger’s game? 15.6 Who is the best golfer overall? 15.7 What else can be learned? References About the Author V NASCAR Can Mathematics Make a Difference? Exploring Tire Troubles in NASCAR Cheryll E. Crowe 16.1 Introduction 16.2 What happened? 16.3 Race Tires vs. Street Tires 16.4 Mathematics is Making a Difference 16.5 Problem Resolved? Looking Towards the Future References About the Author VI Scheduling Scheduling a Tournament Dalibor Froncek 17.1 Some small tournaments 17.2 Tournaments for any even number of teams 17.3 Some more tournament properties References About the Author VII Soccer Bending a Soccer Ball with Math Tim Chartier References About the Author VIII Tennis Teaching Mathematics and Statistics Using Tennis Reza Noubary 19.1 Introduction 19.1.1 General 19.1.2 Specific 19.2 An Illustrative Example 19.3 Activities Activity 1: Bouncing Ball Activity 2: Applying Binomial Distribution, Matrices, Markov Chain, and Derivatives Activity 3: Calculations Based on Normal Distribution Activity 4: Constructing Confidence Intervals and Testing Hypotheses Activity 5: Applying Regression and Time Series for Prediction Activity 6: Research topics About the Author Percentage Play in Tennis G. Edgar Parker 20.1 Introduction 20.2 The Model 20.3 The Calculations 20.4 Big Shot Strategies 20.5 Analyzing Serve 20.6 Afterthoughts Reference About the Author IX Track and Field The Effects of Wind and Altitude in the 400m Sprintwith Various IAAF Track Geometries Vanessa Alday and Michael Frantz 21.1 Introduction and an Early Model 21.2 Quinn’s Model 21.3 The Effects of Track Geometry on Running Performance 21.4 Computation of the Effect of Winds 21.5 Altitude and the Propulsive Force 21.6 Data Collected and Results from Quinn 21.7 Effects of Wind Direction on Overall Performance 21.8 Effects of Altitude and Air Density 21.9 The Equal Quadrant Track 21.10 Wind Effects on the Equal Quadrant Track 21.11 The Ancient Greek Olympiad Track 21.12 Summary of Results 21.13 Directions for Possible Future Work References About the Authors Mathematical Ranking of the Division III Track and Field Conferences Chris Fisette About the Author What is the Speed Limit for Men\'s 100 Meter Dash Reza Noubary 23.1 Introduction 23.2 Methods Based on Trend Analysis 23.3 Methods Based on Outstanding Values 23.3.1 Methods Based on Threshold Theory 23.3.2 Methods Based on Theory of Records 23.4 Ultimate Record References About the Author May the Best Team Win: Determining the Winner of a Cross Country Race Stephen Szydlik 24.1 Warming Up 24.2 Mile 1: Basic Terminology and Some Alternatives 24.3 Mile 2: Fairness Criteria and Other Scoring Methods 24.4 Mile 3: More Criteria and Alternative Scoring Methods 24.5 Mile 4: Some Social Choice Theory 24.6 Mile 5: Impossibility? 24.7 Warmdown: Some Concluding Remarks References About the Author Biomechanics of Running and Walking Anthony Tongen and Roshna E. Wunderlich 25.1 Introduction 25.2 Applications Numerically Calculating Impulse Running Model Walking Model 25.3 Conclusions References About the Authors About the Editor