دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: George Polya سری: ناشر: Princeton University Press سال نشر: 1954 تعداد صفحات: 495 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Mathematics and Plausible Reasoning, both volumes combined به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات و استدلال محتمل ، هر دو جلد با هم ترکیب شده اند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Volume I: Induction and Analogy in Mathematics Preface v Hints to the Reader xi @=18 I. Induction 3 1. Experience and belief 3 2. Suggestive contact 4 3. Supporting contacts 5 4. The inductive attitude 7 Examples and Comments on I 8 II. Generalization, Specialization, Analogy 12 1. Generalization, specialization, analogy, and induction 12 2. Generalization 12 3. Specialization 13 4. Analogy 13 5. Generalization, specialization, and analogy 15 6. Discovery by analogy 17 7. Analogy and induction 21 Examples and Comments on II 22 III. Induction in Solid Geometry 35 1. Polyhedra 35 2. First supporting contacts 38 3. More supporting contacts 38 4. A severe test 39 5. Verifications and verification 40 6. A very different case 41 7. Analogy 42 8. The partition of space 43 9. Modifying the problem 44 10. Generalization, specialization, analogy 44 11. An analogous problem 45 12. An array of analogous problems 46 13. Many problems may be easier than just one 47 14. A conjecture 47 15. Prediction and verification 49 16. Again and better 49 17. Induction suggests deduction, the particular case suggests the general proof 50 18. More conjectures 51 Examples and Comments on III 52 IV. Induction in the Theory of Numbers 59 1. Right triangles in integers 59 2. Sums of squares 62 3. On the sum of four odd squares 63 4. Examining an example 64 5. Tabulating the observations 65 6. What is the rule? 65 7. On the nature of inductive discovery 68 8. On the nature of inductive evidence 68 Examples and Comments on IV 70 V. Miscellaneous Examples of Induction 76 1. Expansions 76 2. Approximations 77 3. Limits 79 4. Trying to disprove it 80 5. Trying to prove it 81 6. The role of the inductive phase 83 Examples and Con1ments on V 84 VI. A More General Statement 90 1. Euler 90 2. Euler\'s memoir 90 3. Transition to a more general viewpoint 99 4. Schematic outline of Euler\'s memoir 99 Examples and Comments on VI 100 VII. Mathematical Induction 108 1. The inductive phase 108 2. The demonstrative phase 110 3. Examining transitions 110 4. The technique of mathematical induction 111 Examples and Comments on VII 116 VIII. Maxima and Minima 121 1. Patterns 121 2. Example 122 3. The pattern of the tangent level line 123 4. Examples 126 5. The pattern of partial variation 128 6. The theorem of the arithmetic and geometric means and its first consequences 130 Examples and Comments on VIII 131 IX. Physical Mathematics 142 1. Optical interpretation 142 2. Mechanical interpretation 146 3. Reinterpretation 149 4. Jean Bernoulli\'s discovery of the brachistochrone 152 5. Archimedes\' discovery of the integral calculus 155 Examples and Comments on IX 158 X. The Isoperimetric Problem 168 1. Descartes\' inductive reasons 168 2. Latent reasons 169 3. Physical reasons 170 4. Lord Rayleigh\'s inductive reasons 170 5. Deriving consequences 171 6. Verifying consequences 174 7 Very close 177 8. Three forms of the Isoperimetric Theorem 179 9. Applications and questions 180 Examples and Comments on X 181 XI. Further Kinds of Plausible Reasons 190 1. Conjectures and conjectures 190 2. Judging by a related case 190 3. Judging by the general case 192 4. Preferring the simpler conjecture 194 5. Background 196 6. Inexhaustible 198 7. Usual heuristic assumptions 199 Examples and Comments on XI 200 Final Remark 210 Solutions to Problems 213 Chapter I 213 Chapter II 214 Chapter III 222 Chapter IV 227 Chapter V 232 Chapter VI 236 Chapter VII 240 Chapter VIII 244 Chapter IX 258 Chapter X 266 Chapter XI 273 Bibliography 279 Volume II: Patterns of Plausible Inference Contents ix Preface v Hints to the Reader vii @=12 XII. Some Conspicuous Patterns 3 1. Verification of a consequence 3 2. Successive verification of several consequences 5 3. Verification of an improbable consequence 7 4. Inference from analogy 9 5. Deepening the analogy 10 6. Shaded analogical inference 12 Examples and Comments on XII 12 XIII. Further Patterns and First Links 18 1. Examining a consequence 18 2. Examining a possible ground 19 3. Examining a conflicting conjecture 20 4. Logical term 20 5. Logical links between patterns of plausible inference 23 6. Shaded inference 23 7. A table 25 8. Combination of simple pattern 26 9. On inference from analogy 27 10. Qualified inference 28 11. On successive verifications 30 12. The influence of rival conjecture 31 13. On judicial proof 32 Examples and Comments on XIII 37 XIV. Chance, the Ever-present Rival Conjecture 55 1. Random mass phenomena 55 2. The concept of probability 57 3. Using the bag and the balls 60 4. The calculus of probability. Statistical hypotheses 64 5. Straightforward prediction of frequencies 65 6. Explanation of phenomena 70 7. Judging statistical hypothese 74 8. Choosing between statistical hypotheses 78 9. Judging nonstatistical conjectures 84 10. Judging mathematical conjectures 95 Examples and Comments on XIV 98 XV. The Calculus of Probability and the Logic of Plausible Reasoning 109 1. Rules of plausible reasoning 109 2. An aspect of demonstrative reasoning 111 3. A corresponding aspect of plausible reasoning 113 4. An aspect of the calculus of probability. Difficulties 116 5. An aspect of the calculus of probability. An attempt 118 6. Examining a consequence 119 7. Examining a possible ground 122 8. Examining a conflicting conjecture 123 9. Examining several consequences in succession 124 10. On circumstantial evidence 126 Examples and Comments on XV 128 XVI. Plausible Reasoning in Invention and Instruction 142 1. Object of the present chapter 142 2. The story of a little discovery 142 3. The process of solution 145 4. Deus ex machina 146 5. Heuristic justification 147 6. The story of another discovery 148 7. Some typical indications 152 8. Induction in invention 153 9. A few words to the teacher 157 Examples and Comments on Chapter XVI, 1-13 160 Solutions to Problems 171 Chapter XII 171 Chapter XIII 174 Chapter XIV 178 Chapter XV 185 Chapter XVI 186 Bibliography 189