دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mariana Montiel, Octavio A. Agustín-Aquino, Francisco Gómez, Jeremy Kastine, Emilio Lluis-Puebla, Brent Milam سری: Lecture Notes in Computer Science, 13267 ISBN (شابک) : 3031070143, 9783031070143 ناشر: Springer سال نشر: 2022 تعداد صفحات: 425 [418] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت تبدیل فایل کتاب Mathematics and Computation in Music: 8th International Conference, MCM 2022, Atlanta, GA, USA, June 21–24, 2022, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات و محاسبات در موسیقی: هشتمین کنفرانس بین المللی، MCM 2022، آتلانتا، GA، ایالات متحده آمریکا، 21 تا 24 ژوئن 2022، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری کامل هشتمین کنفرانس بین
المللی ریاضیات و محاسبات در موسیقی، MCM 2022 است که در آتلانتا،
GA، ایالات متحده آمریکا، در ژوئن 2022 برگزار شد.
29 مقاله کامل و 8 مقاله کوتاه ارائه شده بودند. از بین 45 مورد
ارسالی به دقت بررسی و انتخاب شد. این مقالات شامل تحقیقاتی است
که ریاضیات یا محاسبات را با تئوری موسیقی، تجزیه و تحلیل موسیقی،
آهنگسازی و اجرا ترکیب می کند. آنها در مقیاس ریاضی و نظریه ریتم
سازماندهی شده اند: رویکردهای ترکیبی، نظری نمودار، نظری گروه و
رویکردهای تحولی. رویکردهای مقوله ای و جبری به موسیقی; الگوریتم
ها و مدل سازی برای موسیقی و پدیده های مرتبط با موسیقی.
کاربردهای ریاضیات در تجزیه و تحلیل موسیقی. تکنیک های ریاضی و
میکروتونالیته
This book constitutes the thoroughly refereed proceedings
of the 8th International Conference on Mathematics and
Computation in Music, MCM 2022, held in Atlanta, GA, USA, in
June 2022.
The 29 full papers and 8 short papers presented were carefully
reviewed and selected from 45 submissions. The papers feature
research that combines mathematics or computation with music
theory, music analysis, composition, and performance. They are
organized in Mathematical Scale and Rhythm Theory:
Combinatorial, Graph Theoretic, Group Theoretic and
Transformational Approaches; Categorical and Algebraic
Approaches to Music; Algorithms and Modeling for Music and
Music-Related Phenomena; Applications of Mathematics to Musical
Analysis; Mathematical Techniques and Microtonality
Preface Organization An Afternoon of Math+Music@MODA (Abstract of Invited Talk) Contents Mathematical Scale and Rhythm Theory: Combinatorial, Graph Theoretic, Group Theoretic, and Transformational Approaches A Set-Theoretic Model of Meter and Metric Dissonance 1 Introduction 2 A Set Theoretic Model of Meter 2.1 Time point and span 2.2 Pulse 2.3 Meter 2.4 Metric Relations 3 Kinds of Metric Relations 3.1 Pulse-Association Classes 3.2 Metric-Relation Classes 3.3 Three Genera of Metric Relations 4 Extensions References New Insights on Diatonicity and Majorness 1 Progressive Transposition Scales 1.1 Properties of PT Sets 1.2 The Case N Prime 2 Generalized Diatonic Scales 3 Generalized Major and Minor Scales 3.1 Case N Even References Parsimonious Graphs for Selected Heptatonic and Pentatonic Scales 1 Introduction 2 Selection of Heptatonic Scales 2.1 Combinations of Two Tetrachords 2.2 Combinations of the Altered Notes from the Nearest Key Signatures 2.3 Harmonic Characteristics of the Selected Heptatonic Scales 3 Parsimonious Graphs for the Selected Heptatonic Scales 4 Pentatonic Scales 4.1 Selection of Pentatonic Scales 4.2 Parsimonious Graphs for the Selected Pentatonic Scales 4.3 Relation Between the Selected Heptatonic and Pentatonic Scales 5 Example of Musical Analysis 6 Conclusions References An Interactive Tool for Composing (with) Automorphisms in the Colored Cube Dance 1 An Algebraic Introduction to the Colored Cube Dance 2 The Automorphism Group of the Monoid Action of MU,P, L 3 An Interactive Interface for Composing (with) Automorphisms References Combinatorial Spaces 1 Introduction 2 Music-Theoretical and Mathematical Background 3 Results and Applications 3.1 I Combinatoriality 3.2 P Combinatoriality 3.3 R Combinatoriality 3.4 RI Combinatoriality 4 Conclusions References Euler's ``Tentamen'': Historical and Mathematical Aspects on the Consonance Theory 1 Introduction 2 Some Historical Aspects on Euler's Musical Interests and the Birth of the ``Tentamen'' 3 Sound and Hearing 4 Pleasure and Consonance 4.1 Study of Chords with Two Sounds 4.2 Study of Chords with More Than Two Sounds 5 Comparison Between Tentamen and Other Mathematical Consonance Theories References Categorical and Algebraic Approaches to Music A Projection-Oriented Mathematical Model for Second-Species Counterpoint 1 Introduction 2 General Overview of Mazzola's Counterpoint Model 3 Dichotomies of 2-Intervals 4 Species Projections 5 Algorithm for the Calculation of Projections 6 Comparison with Fux's Approach References When Virtual Reality Helps Fathom Mathemusical Hyperdimensional Models 1 Context and Definitions 1.1 Mathemusical Models 1.2 Virtual Reality 1.3 Immersive World Generation 2 Methodology 2.1 Tools 2.2 VR Techniques 3 Applications 3.1 2D Space: Virtual Swan Lake 3.2 4D Space: Entangled Hypersphere 4 Feedback and Future 4.1 Feedback 4.2 Future Developments 5 Conclusion References SUM Classes and Quotient Generalized Interval Systems 1 Introduction 2 SUM-Class Transformation Groups and Quotient Generalized Interval Systems 3 The Dual Quotient Generalized Interval System 4 Other Set-Classes References Extended Vuza Canons 1 Prelude 2 Aperiodic Tiling Canons 3 Extended Vuza Canons References Some Mathematical and Computational Relations Between Timbre and Color 1 Introduction 2 Spaces and Mappings: An Overview 2.1 The CIE 1931 Color Space 2.2 Timbre Space 2.3 Maps Between Timbre and Color 3 Categorical Enrichment 3.1 Induced Infinity-Groupoids 3.2 Induced Functors 3.3 A Computation of Colors from Timbres 4 Gestural Considerations 4.1 From Paths to Gestures and Gestural Similarity 4.2 Induced Maps Between Spaces of Gestures 5 Conclusion 6 Glossary References Transformations for Pairwise Well-Formed Modes 1 Motivation 2 Letter Frequencies and Periods in Pairwise Well-Formed Words 3 Syntonic and Diatonic Morphisms Revisited 4 Specific PWWF Superpositions of Specific Syntonic and Diatonic Modes 5 Supersymmetries: Exploring a Refined Graham Construction References Algorithms and Modeling for Music and Music-Related Phenomena Spline Modeling of Audio Signals with Cycle Interpolation 1 Introduction 1.1 Motivation and Background 2 The Basic Model 3 Cycle Interpolation 4 Problems with Cycle Interpolation 5 Future Work References Transposition and Time-Scaling Invariant Algorithm for Detecting Repeated Patterns in Polyphonic Music 1 Introduction 2 Problem Definition 2.1 Example 2.2 Lower Bound 2.3 Simple Algorithm 3 Algorithm Description 3.1 Example 3.2 Filtering Repetitions 4 Experiments 4.1 Efficiency 4.2 Pattern Discovery 5 Conclusions References On the Memory Usage of the SIA Algorithm Family for Symbolic Music Pattern Discovery 1 Introduction 2 Background 3 Sweepline Algorithm 3.1 Correctness and Analysis of the Algorithm 3.2 Example 4 Classifying Patterns 4.1 Finding All TECs 4.2 Finding Distinct TECs 5 Experiments 5.1 Efficiency 5.2 Filtering Patterns 6 Conclusions References A Proposal to Compare the Similarity Between Musical Products. One More Step for Automated Plagiarism Detection? 1 Introduction 2 Theoretical Background 2.1 Clustering Methods 2.2 Hard and Soft Partitions 2.3 K-Means Clustering 2.4 Fuzzy C-Means Clustering (FCM) 2.5 Fuzzy Ordered C-Means Clustering (FOCM) 2.6 Definition of a Dissimilarity Based on FOCM Clustering 3 A Comparison of Musical Products Based on FOCM 3.1 FFT Process 3.2 Peak Detection Algorithm 3.3 Constellation Map 3.4 Calculation of the Dissimilarity Based on FOCM 4 Experiments 5 Conclusions References A New Fitness Function for Evolutionary Music Composition 1 Introduction 2 Related Work 3 Theoretical Background 3.1 Mathematical Definition of a Melody 3.2 Neighbourhood Functions 3.3 Fitness Function 4 Genetic Algorithm 4.1 Genotype Representation 4.2 Restrictions on the Evolution Strategy 4.3 Mutation 4.4 Initialization of the Population, Parents Selection and Crossover 4.5 Performance Indicators 5 Experiments 5.1 First Experiment 5.2 Second Experiment 5.3 Results 6 Discussion 7 Conclusions References A Mathematical Model of Tonal Function (I): Voice Leadings 1 What Is Tonal Function? 2 Basic Concepts 2.1 Pitch Classes and Chords 2.2 The Nabla Distance 3 A Mathematical Model of Tonal Function 3.1 Voice Optimization 3.2 Cadence Endomorphisms and Chord Classification 4 Conclusions References A Mathematical Model of Tonal Function (II): Modulation 1 Introduction 2 Tonal Function in Chords with Different Number of Voices 3 Dual Tonal Function 4 Chord Classification 5 Modulation 6 Conclusions References Hypercube + Rubik's Cube + Music = HyperCubeHarmonic 1 Introduction 2 Mathematical Concepts 2.1 Ars Combinatoria, Permutations, and the Rubik's Cube 2.2 The Hypercube 2.3 The Hyper-Rubik's Cube 2.4 The Hyper-Rubik's Cube with Music: The HyperCubeHarmonic 3 First Implementations 3.1 Implementation 1 3.2 Implementation 2 4 Discussion and Conclusions References Applications of Mathematics to Musical Analysis Mathematical Morphology Operators for Harmonic Analysis 1 Introduction 2 Algebraic Framework 2.1 Time Group 2.2 Frequency Groups 2.3 Time-Frequency Groups 3 Mathematical Morphology 3.1 Erosion and Dilation 3.2 Opening and Closing 3.3 Hit-or-miss Transform 4 Applications 4.1 Mathematical Morphology on Z12 4.2 Mathematical Morphology on Chroma Rolls 5 Conclusions References Computational Analysis of Musical Structures Based on Morphological Filters 1 Introduction 2 Creating a Self-distance Matrix from Symbolic Music 2.1 Converting Symbolic Music to Sequence Using Chord Contour 2.2 Distance Matrix of a Chord Contour Sequence 3 Analysis of the Self-distance Matrix Using Morphological Operations and Filters 3.1 A Short Introduction to Morphological Filters 3.2 Application of Mathematical Morphology to the Self-distance Matrix 4 Changing the Shape of the Morphological Filter to Detect Different Musical Structures 5 Conclusions References Non-spectral Transposition-Invariant Information in Pitch-Class Sets and Distributions 1 Pitch-Class Set Theory and Homometry 2 Products of DFT Coefficients 2.1 Definitions 2.2 Features 3 Example: Tonal Pitch-Class Distributions 4 Example: All-Interval Tetrachords and Takemitsu 5 Conclusion References Tetrachordal Folding Operations 1 Trichordal Folding 2 Tetrachordal Folding 3 Application to Morton Feldman's ``For Stephan Wolpe'' 4 Conclusion References Mathematical Techniques and Microtonality Continuous Chromagrams and Pseudometric Spaces of Sound Spectra 1 Introduction 1.1 Pitch and Chroma 1.2 Motivations 2 Continuous Chromagrams 2.1 Illustration and Definition 2.2 Invariance to Interval of Reduction 2.3 Computational Implementations 3 Pseudometric Spaces of Sound Spectra 3.1 Lp Pseudometrics 3.2 Metrics Induced from Pseudometrics 3.3 Comparing Time Variant Spectra 4 Applications 4.1 Visualizations of Musical Sounds 4.2 Creative and Theoretical Possibilities References N2D3P9 1 Background on Sagittal Notation 2 A Preliminary Pop Culture Reference 3 Formula 4 Justification 5 Development/Discovery References Performing Easley Blackwood’s Twelve Microtonal Etudes:An Open-Source Software Development Project 1 Introduction 2 Examining Some Keyboard Mappings for Microtonal Music 3 An Open-Source Project for Microtonal Music Software 4 Conclusion References Short Papers Identifying Metric Types with Optimized DFT and Autocorrelation Models 1 Procedure 1.1 DFT 1.2 Autocorrelation 1.3 Corpus and Data Preparation 1.4 Weighting, Windowing, and Training 2 Results References Persistent Homology on Musical Bars 1 Introduction 1.1 Persistent Homology 1.2 Context and Problematic 2 Persistent Homology on Musical Bars 2.1 Filtration: The Vietoris-Rips Method 2.2 Musical Bars of a Score 2.3 The Score as a Point Cloud 3 Application: Analysis of a Musical Piece 4 Conclusion and Prospect References Formal Structures of a Harmony in the Parabola 1 Introduction 2 The Group Law on the Parabola 3 Harmonic Polygons over a Parabola 4 The Ring and Field Law on the Parabola 5 Parabola over a Module and Affine Transformations 6 Group Actions over Parabolic Music 7 Parabolic Planet-8D and Metric 8 The Discrete Fourier Transform in a Parabolic World 9 Conclusions References midiVERTO: A Web Application to Visualize Tonality in Real Time 1 Introduction 2 midiVERTO: Features and Technical Details 3 A Brief Case Study 4 Conclusion References Quantum-Musical Explorations on Zn 1 Motivation 2 Quantum Theory on Zn 3 Exploring the Finite Quantum-Harmonic Oscillator References The Mystery of Anatol Vieru's Periodic Sequences Unveiled 1 Anatol Vieru's Periodic Sequence: A New Formalization 2 Decomposing Pm 2.1 Decomposition with Primes 2.2 Decomposition in Nilpotent and Idempotent Part 2.3 Decomposition of Nilpotent Sequences Using Constants 3 Unveiling the Period and the Proliferation of Values 3.1 Period of the Primitives of Vieru's Sequence 3.2 Proliferation of Values 4 Recursive Formulas for the Number of {4,8} in 8s-3 V References Benford's Law and Music Note Frequencies 1 Introduction 1.1 What is Benford's Law 2 Numeric Proof 3 Piano Note Frequencies 4 Application 5 Conclusion References Altered Chord Alternatives 1 Introduction 2 Motivation 3 Theoretical Framework 4 Methodology 5 Results 6 Future Directions References Information Synthesis of Time-Geometry QCurve for Music Retrieval 1 Introduction 2 QCurve Transform 3 Harmonic Consistency 4 Harmonic Leading 5 Consonance 6 LSQOP 7 Evaluation and Analysis 8 Conclusions References Investigating Style with Scale Embeddings 1 Introduction 2 Methodology: Word2vec, Encoding Procedure, and Training 2.1 Word2vec Algorithm 2.2 Encoding Procedure 2.3 Model Parameters 3 Properties of Embeddings 3.1 The Circle of Fifths According to the Mozart Model 3.2 Composer Embeddings Correlated with the Circle of Fifths 4 Conclusion References Author Index