دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3,3e ed.] نویسندگان: K.M. Ramachandran, Chris P. Tsokos سری: ISBN (شابک) : 0128178159, 9780128178157 ناشر: Academic Press, A. P, AP سال نشر: 2020 تعداد صفحات: زبان: English فرمت فایل : 7Z (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Mathematical Statistics with Applications in R, Third Edition [3rd Ed] (Instructor's Solution Manual) (Solutions) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار ریاضی با کاربردها در R، ویرایش سوم [ویرایش سوم] (راهنمای راه حل های مدرس) (راه حل ها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Mathematical Statistics with Applications in R Copyright Dedication Acknowledgments About the authors Preface Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Aim and Objective of the Textbook Features Flow chart 1. Descriptive statistics 1.1 Introduction 1.1.1 Data collection 1.2 Basic concepts 1.2.1 Types of data Exercises 1.2 1.3 Sampling schemes 1.3.1 Errors in sample data 1.3.2 Sample size Exercises 1.3 1.4 Graphical representation of data Exercises 1.4 1.5 Numerical description of data 1.5.1 Numerical measures for grouped data 1.5.2 Box plots Exercises 1.5 1.6 Computers and statistics 1.7 Chapter summary 1.8 Computer examples 1.8.1 R introduction and examples Importing a CSV file Exporting a CSV 1.8.2 Minitab examples 1.8.3 SPSS examples 1.8.4 SAS examples Exercises 1.8 Projects for chapter 1 1A World Wide Web and data collection 1B Preparing a list of useful Internet sites 1C Dot plots and descriptive statistics 1D Importance of statistics in our society 1E Uses and misuses of statistics 2. Basic concepts from probability theory 2.1 Introduction 2.2 Random events and probability Exercises 2.2 2.3 Counting techniques and calculation of probabilities Exercises 2.3 2.4 The conditional probability, independence, and Bayes' rule Exercises 2.4 2.5 Random variables and probability distributions Exercises 2.5 2.6 Moments and moment-generating functions 2.6.1 Skewness and kurtosis Exercises 2.6 2.7 Chapter summary 2.8 Computer examples (optional) 2.8.1 Examples using R 2.8.2 Minitab computations 2.8.3 SPSS examples 2.8.4 SAS examples Projects for chapter 2 2A The birthday problem 2B The Hardy-Weinberg law 2C Some basic probability simulation 3. Additional topics in probability 3.1 Introduction 3.2 Special distribution functions 3.2.1 The binomial probability distribution 3.2.2 Poisson probability distribution 3.2.3 Uniform probability distribution 3.2.4 Normal probability distribution 3.2.5 Gamma probability distribution Exercises 3.2 3.3 Joint probability distributions 3.3.1 Covariance and correlation Exercises 3.3 3.4 Functions of random variables 3.4.1 Method of distribution functions 3.4.2 The probability density function of Y = g(X), where g is differentiable and monotone increasing or decreasing 3.4.3 Probability integral transformation 3.4.4 Functions of several random variables: method of distribution functions 3.4.5 Transformation method Exercises 3.4 3.5 Limit theorems Exercises 3.5 3.6 Chapter summary 3.7 Computer examples (optional) 3.7.1 The R examples 3.7.2 Minitab examples 3.7.3 Distribution checking 3.7.4 SPSS examples 3.7.5 SAS examples Projects for Chapter 3 3A Mixture distribution 3B Generating samples from exponential and Poisson probability distribution Exercise 3B 3C Coupon collector's problem 3D Recursive calculation of binomial and Poisson probabilities 3E Simulation of Poisson approximation of binomial 3F Generating a large amount of random data using R 4. Sampling distributions 4.1 Introduction 4.1.1 Finite populations Exercises 4.1 4.2 Sampling distributions associated with normal populations 4.2.1 Chi-square distribution 4.2.2 Student t distribution 4.2.3 F-distribution Exercises 4.2 4.3 Order statistics Exercises 4.3 4.4 The normal approximation to the binomial distribution Exercises 4.4 4.5 Chapter summary 4.6 Computer examples 4.6.1 Examples using R 4.6.2 Minitab examples 4.6.3 SPSS examples 4.6.4 SAS examples Projects for chapter 4 4A A method to obtain random samples from different distributions 4B Simulation experiments 4C A test for normality Exercises 5. Statistical estimation 5.1 Introduction 5.2 The methods of finding point estimators 5.2.1 The method of moments 5.2.2 The method of maximum likelihood 5.2.2.1 Some additional probability distributions Exercises 5.2 5.3 Some desirable properties of point estimators 5.3.1 Unbiased estimators 5.3.2 Sufficiency Exercises 5.3 5.4 A method of finding the confidence interval: pivotal method Exercises 5.4 5.5 One-sample confidence intervals 5.5.1 Large-sample confidence intervals 5.5.2 Confidence interval for proportion, p 5.5.2.1 Margin of error and sample size 5.5.3 Small-sample confidence intervals for μ Exercises 5.5 5.6 A confidence interval for the population variance Exercises 5.6 5.7 Confidence interval concerning two population parameters Exercises 5.7 5.8 Chapter summary 5.9 Computer examples 5.9.1 Examples using R 5.9.2 Minitab examples 5.9.3 SPSS examples 5.9.4 SAS examples Exercises 5.9 5.10 Projects for Chapter 5 5.10.1 Asymptotic properties 5.10.2 Robust estimation 5.10.3 Numerical unbiasedness and consistency 5.10.4 Averaged squared errors 5.10.5 Alternate method of estimating the mean and variance 5.10.6 Newton-Raphson in one dimension 5.10.7 The empirical distribution function 5.10.8 Simulation of coverage of the small confidence intervals for μ 5.10.9 Confidence intervals based on sampling distributions 5.10.10 Large-sample confidence intervals: general case 5.10.11 Prediction interval for an observation from a normal population 5.10.12 Empirical distribution function as estimator for cumulative distribution function 6. Hypothesis testing 6.1 Introduction 6.1.1 Sample size Exercises 6.1 6.2 The Neyman-Pearson lemma Exercises 6.2 6.3 Likelihood ratio tests Exercises 6.3 6.4 Hypotheses for a single parameter 6.4.1 The p value 6.4.2 Hypothesis testing for a single parameter Exercises 6.4 6.5 Testing of hypotheses for two samples 6.5.1 Independent samples 6.5.1.1 Equal variances 6.5.1.2 Unequal variances: Welch's t-test (σ12≠σ22) 6.5.2 Dependent samples Exercises 6.5 6.6 Chapter summary 6.7 Computer examples 6.7.1 R examples 6.7.2 Minitab examples 6.7.3 SPSS examples 6.7.4 SAS examples Projects for Chapter 6 6A Testing on computer-generated samples 6B Conducting a statistical test with confidence interval 7. Linear regression models 7.1 Introduction 7.2 The simple linear regression model 7.2.1 The method of least squares 7.2.2 Derivation of β^0 and β^1 7.2.3 Quality of the regression 7.2.4 Properties of the least-squares estimators for the model Y=β0 + β1x + ε 7.2.5 Estimation of error variance σ2 Exercises 7.2 7.3 Inferences on the least-squares estimators 7.3.1 Analysis of variance approach to regression Exercises 7.3 7.4 Predicting a particular value of Y Exercises 7.4 7.5 Correlation analysis Exercises 7.5 7.6 Matrix notation for linear regression 7.6.1 ANOVA for multiple regression Exercises 7.6 7.7 Regression diagnostics 7.8 Chapter summary 7.9 Computer examples 7.9.1 Examples using R 7.9.2 Minitab examples 7.9.3 SPSS examples 7.9.4 SAS examples Projects for chapter 7 7A Checking the adequacy of the model by scatterplots 7B The coefficient of determination 7C Outliers and high leverage points 8. Design of experiments 8.1 Introduction 8.2 Concepts from experimental design 8.2.1 Basic terminology 8.2.2 Fundamental principles: replication, randomization, and blocking 8.2.3 Some specific designs Exercises 8.2 8.3 Factorial design 8.3.1 One-factor-at-a-time design 8.3.2 Full factorial design 8.3.3 Fractional factorial design Exercises 8.3 8.4 Optimal design 8.4.1 Choice of optimal sample size Exercises 8.4 8.5 The Taguchi methods Exercises 8.5 8.6 Chapter summary 8.7 Computer examples 8.7.1 Examples using R 8.7.2 Minitab examples 8.7.3 SAS examples Projects for chapter 8 8A Sample size and power 8B Effect of temperature on the spoilage of milk 9. Analysis of variance 9.1 Introduction 9.2 Analysis of variance method for two treatments (optional) Exercises 9.2 9.3 Analysis of variance for a completely randomized design 9.3.1 The p-value approach 9.3.2 Testing the assumptions for one-way analysis of variance 9.3.3 Model for one-way analysis of variance (optional) Exercises 9.3 9.4 Two-way analysis of variance, randomized complete block design Exercises 9.4 9.5 Multiple comparisons Exercises 9.5 9.6 Chapter summary 9.7 Computer examples 9.7.1 Examples using R 9.7.2 Minitab examples 9.7.3 SPSS examples 9.7.4 SAS examples Exercises 9.7 Projects for Chapter 9 9A Transformations 9B Analysis of variance with missing observations 9C Analysis of variance in linear models 10. Bayesian estimation and inference 10.1 Introduction 10.2 Bayesian point estimation 10.2.1 Criteria for finding the Bayesian estimate Exercises 10.2 10.3 Bayesian confidence interval or credible interval Exercises 10.3 10.4 Bayesian hypothesis testing Exercises 10.4 10.5 Bayesian decision theory Exercises 10.5 10.6 Empirical Bayes estimates 10.6.1 Jackknife resampling 10.6.2 Bootstrap resampling 10.6.3 Parametric, standard Bayes, empirical Bayes: Bootstrapping and jackknife Exercises 10.6 10.7 Chapter summary 10.8 Computer examples 10.8.1 Examples with R Project for Chapter 10 10A Predicting future observations 11. Categorical data analysis and goodness-of-fit tests and applications 11.1 Introduction 11.2 Contingency tables and probability calculations Exercises 11.2 11.3 Estimation in categorical data 11.3.1 Large sample confidence intervals for p 11.4 Hypothesis testing in categorical data analysis 11.4.1 The chi-square tests for count data: one-way analysis 11.4.2 Two-way contingency table: test for independence Exercises 11.4 11.5 Goodness-of-fit tests to identify the probability distribution 11.5.1 Pearson's chi-square test 11.5.2 The Kolmogorov-Smirnov test: (one population) 11.5.3 The Anderson-Darling test 11.5.4 Shapiro-Wilk normality test 11.5.5 The P-P plots and Q-Q plots 11.5.5.1 Steps to construct the P-P plot Exercises 11.5 11.6 Chapter summary 11.7 Computer examples 11.7.1 R-commands 11.7.2 Minitab examples 11.7.2.1 Chi-square test Projects for Chapter 11 11A Fitting a distribution to data 11B Simpson's paradox 12 - Nonparametric Statistics 12.1 Introduction 12.2 Nonparametric confidence interval Exercises 12.2 12.3 Nonparametric hypothesis tests for one sample 12.3.1 The sign test 12.3.2 Wilcoxon signed rank test 12.3.3 Dependent samples: paired comparison tests Exercises 12.3 12.4 Nonparametric hypothesis tests for two independent samples 12.4.1 Median test 12.4.2 The Wilcoxon rank sum test Exercises 12.4 12.5 Nonparametric hypothesis tests for k ≥ 2 samples 12.5.1 The Kruskal-Wallis test 12.5.2 The Friedman test Exercises 12.5 12.6 Chapter summary 12.7 Computer examples 12.7.1 Examples using R 12.7.2 Minitab examples 12.7.3 SPSS examples 12.7.4 SAS examples Projects for Chapter 12 12A Comparison of Wilcoxon tests with normal approximation 12B Randomness test (Wald-Wolfowitz test) Exercise 13. Empirical methods 13.1 Introduction 13.2 The jackknife method Exercises 13.2 13.3 An introduction to bootstrap methods 13.3.1 Bootstrap confidence intervals Exercises 13.3 13.4 The expectation maximization algorithm Exercises 13.4 13.5 Introduction to Markov chain Monte Carlo 13.5.1 Metropolis algorithm 13.5.2 The Metropolis-Hastings algorithm 13.5.3 Gibbs algorithm 13.5.4 Markov chain Monte Carlo issues Exercises 13.5 13.6 Chapter summary 13.7 Computer examples 13.7.1 Examples using R 13.7.2 Examples with Minitab 13.7.3 SAS examples Project for Chapter 13 13A Bootstrap computation 14. Some issues in statistical applications: an overview 14.1 Introduction 14.2 Graphical methods Exercises 14.2 14.3 Outliers Exercises 14.3 14.4 Checking the assumptions 14.4.1 Checking the assumption of normality 14.4.2 Data transformation 14.4.3 Test for equality of variances 14.4.3.1 Testing equality of variances for two normal populations 14.4.3.2 Test for equality of variances, k≥2 populations 14.4.4 Test of independence Exercises 14.4 14.5 Modeling issues 14.5.1 A simple model for univariate data 14.5.2 Modeling bivariate data Exercises 14.5 14.6 Parametric versus nonparametric analysis Exercises 14.6 14.7 Tying it all together Exercises 14.7 14.8 Some real-world problems: applications 14.8.1 Global warming 14.8.2 Hurricane Katrina 14.8.3 National unemployment 14.8.4 Brain cancer 14.8.5 Rainfall data analysis 14.8.6 Prostate cancer 14.8 Exercises 14.9. Conclusion Appendix I. Set theory Appendix II. Review of Markov chains Appendix III. Common probability distributions Appendix IV. What is R? Appendix V. Probability tables References Index A B C D E F G H I J K L M N O P Q R S T U V W Z