دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Pramod Belkhode, Prashant Maheshwary, Kanchan Borkar, J.P. Modak سری: ISBN (شابک) : 9781032331980, 9781003318699 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: [231] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 49 Mb
در صورت تبدیل فایل کتاب Mathematical Modelling. Simulation Analysis and Industrial Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی ریاضی تحلیل شبیه سازی و کاربردهای صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Author Biographies Chapter 1: Evaluation of the System 1.1 Introduction 1.2 Causes and Effects Relationships 1.3 Ergonomics 1.4 Anthropometry 1.5 Approach to Formulate the Mathematical Model Chapter 2: Concept of Field Data-Based Modelling 2.1 Introduction 2.2 Formulation of Mathematical Model 2.3 Limitations of Adopting Field Database Model 2.4 Identification of Causes and Effects of an Activity 2.5 Dimensional Analysis 2.6 Dimensional Equation 2.6.1 Rayleigh’s Method 2.6.2 Buckingham π Theorem Method Chapter 3: Design of Experimentation 3.1 Introduction 3.2 Limitations of Adopting Field Data-Based Model Formulation for Man Machine System 3.3 The Approach for Formulating a Field or Experimental Data-Based Model 3.4 Identification of Variables 3.5 Problems Associated with Crankshaft/Liner Piston Maintenance Activities of Locoshed 3.5.1 Independent and Dependent Variables of Crankshaft Maintenance Activity 3.5.2 Dimensional Analysis of Crankshaft Maintenance Operation 3.5.3 Establishment of Dimensionless Pi Terms for Crankshaft Maintenance Activity 3.5.4 Formulation of a Field Data-Based Model for Response Variables of Crankshaft Maintenance Activity 3.5.5 Model Formulation by Identifying the Curve Fitting Constant and Various Indices of Pi Terms of Crankshaft Maintenance Activity 3.5.6 Independent and Dependent Variables of Liner Piston Maintenance 3.5.7 Dimensional Analysis of Liner Piston Maintenance 3.5.8 Establishment of Dimensionless Pi Terms for Liner Piston Maintenance 3.5.9 Formulation of a Field Data-Based Model for Response Variables of Liner Piston Maintenance 3.5.10 Model Formulation by Identifying the Curve Fitting Constant and Various Indices of Pi Terms of Liner Piston Maintenance 3.6 Problem Associated with Fossil Fuels 3.6.1 Diesel Blending 3.6.2 Independent and Dependent π Term 3.6.3 Establishment of Dimensionless Group of π Terms 3.6.4 Creation of Field Data-Based Model 3.6.5 Model Formulation by Identifying the Curve Fitting Constant and Various Indices of π Terms 3.7 Problem Associated with Conventional Power Generation 3.7.1 Identification of Variables Affecting the Phenomenon 3.7.2 Formation of Pi (π) Terms for All Dependent and Independent Variables Affecting the Phenomenon 3.7.3 Formulation of Experimental Data Base Model for Solar Updraft Tower Chapter 4: Experimentation 4.1 Introduction 4.2 Instrumentation and Data Collection 4.2.1 Instrumentation for Crankshaft Maintenance Activity 4.2.2 Data Collection f rom Field for Crankshaft Maintenance Activity 4.2.3 Instrumentation Used for Liner Piston Maintenance Activity 4.2.4 Data Collection from the Field for Liner Piston Maintenance Activity 4.2.5 Basis for Arriving at Number of Observations 4.2.6 Calculation of Field Human Energy Consumed in Maintenance Activity 4.2.7 Calculation of Human Energy Consumed in Crankshaft Maintenance Activity 4.2.8 Instrumentation and Collection of Data for Solar Updraft Tower 4.2.9 Instrumentation and Collection of Data for the Engine Performance by Using the Alternative Fuels 4.2.10 Establishment of Dimensionless Group of π Terms 4.2.11 Creation of Field Data-Based Model 4.2.12 Model Formulation by Identifying the Curve Fitting Constant and Various Indices of π Terms 4.2.13 Basis for Arriving at Number of Observations Chapter 5: Formulation of Mathematical Model 5.1 Formulation of Field Data-Based Model for Crankshaft Maintenance Operation 5.1.1 Model Formulation for π D1, Overhauling Time of Crankshaft Maintenance Activity by Identifying the Curve Fitting Constant and Various Indices of pi Terms 5.1.2 Model Formulation for π D2, Human Energy Consumed in Crankshaft Maintenance Activity by Identifying the Curve Fitting Constant and Various Indices of Pi Terms 5.1.3 Model Formulation for π D3, Productivity of Crankshaft Maintenance Activity by Identifying the Curve Fitting Constant and Various Indices of Pi Terms 5.1.4 Models Developed for the Dependent Variables – Crankshaft Maintenance Activity 5.2 Formulation of Field Data-Based Model For Liner Piston Maintenance Activity 5.2.1 Model Formulation for π D1, Overhauling Time of Liner Piston Maintenance Activity by Identifying the Curve Fitting Constant and Various Indices of Pi Terms 5.2.2 Model Formulation for π D2, Human Energy Consumed in Liner Piston Maintenance Activity by Identifying the Curve Fitting Constant and Various Indices of Pi Terms 5.2.3 Model Formulation for π D3, Productivity of Liner Piston Maintenance Activity by Identifying the Curve Fitting Constant and Various Indices of Pi Terms 5.2.4 Models Developed for the Dependent Variables − Liner Piston Maintenance Activity 5.3 Formulation of Field Data-Based Model for Diesel Blending 5.3.1 Model Formulation by Identifying the Curve Fitting Constant and Various Indices of π Terms 5.3.2 Model Formulation for Brake Thermal Efficiency (Z 1) 5.3.3 Model Formulation for Brake-Specific Fuel Consumption (Z 2) 5.4 Formulation of Field Data-Based Model for Solar Updraft Tower 5.4.1 Model Formulation for Turbine Speed Developed by Identifying the Constant and Various Indices of π Terms 5.4.2 Model Formulation for Turbine Power Developed by Identifying the Constant and Various Indices of π Terms Chapter 6: Artificial Neural Network Simulation 6.1 Introduction 6.2 Procedure for Formulation of ANN Simulation 6.3 Ann Program for Crankshaft Maintenance Activity 6.3.1 ANN Program for Overhauling Time of Crankshaft Maintenance Activity (z 1C) 6.3.2 ANN Program For Human Energy Consumed in Crankshaft Maintenance Activity (z 2C) 6.3.3 ANN Program for Productivity of Crankshaft Maintenance Activity (z 3C) 6.4 ANN Program for Liner Piston Maintenance Activity 6.4.1 ANN Program for Overhauling Time of Liner Piston Maintenance Activity (z 1P) 6.4.2 ANN Program for Human Energy Consumed in Liner Piston Maintenance Activity (z 2P) 6.4.3 ANN Program for Productivity of Liner Piston Maintenance Activity (z 3P) 6.5 ANN Program for Brake Thermal Efficiency and Brake-specific Fuel Consumption 6.5.1 ANN Program for Brake Thermal Efficiency 6.5.2 ANN Program for Brake-specific Fuel Consumption 6.6 ANN Program for Solar Updraft Tower 6.6.1 ANN Program for Turbine Speed 6.6.2 ANN Program for Turbine Power Chapter 7: Sensitivity Analysis 7.1 Sensitivity Analysis of Crankshaft Maintenance Activity 7.1.1 Effect of Introduced Change on the Dependent π Term – Overhauling Time of a Maintenance Activity of Crankshaft Maintenance Activity (z 1C) 7.1.2 Effect of Introduced Change on the Dependent π Term – Human Energy Consumed in Crankshaft Maintenance Activity (z 2C) 7.1.3 Effect of Introduced Change on the Dependent π term – Productivity of Crankshaft Maintenance Activity (z 3C) 7.2 Sensitivity Analysis of Liner Piston Maintenance Activity 7.2.1 Effect of Introduced Change on the Dependent π Term – Overhauling Time of a of Liner Piston Maintenance Activity (z 1P) 7.2.2 Effect of Introduced Change on the Dependent Pi Terms – Human Energy Consumed in Liner Piston Maintenance Activity (z 2P) 7.2.3 Effect of Introduced Change on the Dependent π Term – Productivity of Liner Piston Maintenance Activity (z 3P) 7.3 Optimization of Models for Crankshaft Maintenance Activity 7.4 Optimization of the Models for Liner Piston Maintenance Activity 7.5 Reliability of Models 7.5.1 Reliability of Crankshaft Maintenance Activity 7.5.2 Reliability of Liner Piston Maintenance Activity 7.6 Sensitivity Analysis of Brake Thermal Efficiency and Brake Specific Fuel Consumption 7.6.1 Effect of Introduced Change on the Dependent π Term: Brake Thermal Efficiency 7.6.2 Effect of Introduced Change on the Dependent π Term: Brake Thermal Efficiency 7.7 Sensitivity Analysis of Turbine Speed and Turbine Power 7.7.1 Effect of Introduced Change on the Dependent π Term: Turbine Speed 7.7.2 Effect of Introduced Change on the Dependent π Term: Power Developed Chapter 8: Interpretation of Mathematical Models 8.1 Models Developed for Dependent Variables of Crankshaft Maintenance Activity 8.1.1 Interpretation of Model of Crankshaft Maintenance Activity 8.1.1.1 Analysis of the Model for Dependent Pi Term – Overhauling Time of Crankshaft Maintenance Activity (z 1C) 8.1.1.2 Analysis of the Model for Dependent Pi Term – Human Energy Consumed in Crankshaft Maintenance Activity (z 2C) 8.1.1.3 Analysis of the Model for Dependent Pi Term – Productivity in Crankshaft Maintenance Activity (z 3C) 8.1.2 Analysis of Performance of Models by ANN Simulation of Crankshaft Maintenance Activity 8.2 Models Developed for Dependent Variables of Liner Piston Maintenance Activity 8.2.1 Interpretation of Models of Liner Piston Maintenance Activity 8.2.2 Analysis of Performance of Models by ANN Simulation of Liner Piston Maintenance Activity 8.3 Analysis of The Mathematical Model for The Dependent Pi Term Brake Thermal Efficiency 8.4 Analysis of the Mathematical Model for the Dependent Pi Term Brake Specific Fuel Consumption 8.5 Models Developed for Dependent Variables Turbine Speed 8.5.1 Analysis of the Model for Dependent π Term Z 1 8.6 Analysis of Performance of the Models of Power Developed 8.6.1 Interpretation of the Model 8.6.2 Analysis of the Model for Dependent π Term Z2 8.6.2.1 Analysis of Performance of the Models Bibliography Index