دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: P. Balasubramaniam, Kuru Ratnavelu, Grienggrai Rajchakit, G. Nagamani سری: Springer Proceedings in Mathematics & Statistics, 376 ISBN (شابک) : 9811660174, 9789811660177 ناشر: Springer سال نشر: 2022 تعداد صفحات: 348 [349] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Mathematical Modelling and Computational Intelligence Techniques: ICMMCIT-2021, Gandhigram, India February 10–12 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی ریاضی و تکنیکهای هوش محاسباتی: ICMMCIT-2021، گاندیگرام، هند 10 تا 12 فوریه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgements About This Book Contents About the Editors Mathematical Modelling Application of Optimal Controls on Dengue Dynamics—A Mathematical Study 1 Introduction 2 Mathematical Formulation and Its Description 2.1 Positivity and Boundedness of the System 3 Model Analysis 3.1 Endemic Equilibrium Point Existence 4 Sensitivity Analysis 5 Optimal Control Analysis 6 Discussion and Conclusion References Did the COVID-19 Lockdown in India Succeed? A Mathematical Study 1 Introduction 2 COVID-19 Lockdown: Indian Scenario 3 Methodology 3.1 Model Formulation 3.2 The Basic Reproduction Number 3.3 Data Collection and Model Fitting 4 Results 5 Discussion 6 Conclusion 7 Appendix 1 8 Appendix 2 References Tumour Growth and Its Treatment Response Delineate with Mathematical Models 1 Introduction 2 Tumour Growth Treatment Model 3 Stability Analysis 3.1 Qualitative Analysis of Hahnfeldt Et. Al. Model and Modified Hahnfeldt Model Without Treatment 3.2 Result and Discussion 4 Numerical Simulation 4.1 Root Mean Square Error 5 Conclusion References A Computational Approach to the Three-Body Coulomb Problem: Positron Scattering from Atomic Systems 1 Introduction 2 Optical Potential Formalism 3 Computational Details 3.1 Computational Details of the Optical Potentials 3.2 Numerical Solutions of Lippmann–Schwinger Equations 3.3 Convergence of the Cross Section 3.4 An Overview of the Coupled-Channel Optical Method (CCOM) Computational Codes 4 Results 5 Conclusion References Common Best Proximity Points for Some Contractive Type Mappings 1 Introduction 2 Preliminaries 3 Main Results 4 Conclusion References Dynamical Analysis of Conformable Fractional-Order Rosenzweig-MacArthur Prey–Predator System 1 Introduction 2 Preliminaries and System Description 2.1 Preliminaries 2.2 System Description 3 Dynamical Behavior of the System 3.1 Existence and Uniqueness of the Solution 3.2 Non-negativity and Boundedness 4 Equilibrium Points and Stability Analysis 4.1 Equilibrium Points 4.2 Stability Analysis 5 Numerical Example References Computation of Probabilities of Mixed Poisson–Weibull Distribution 1 Introduction 2 Mixed Poisson Distributions 2.1 Negative Binomial, Poisson–Inverse Gaussian, and Poisson–Lognormal Distributions 2.2 The Poisson–Weibull Distribution 3 Computation of Poisson–Weibull Probabilities 3.1 Alternating Series Formula for Poisson–Weibull Probabilities 3.2 Monte Carlo Simulation Technique 3.3 Application of the Computational Approaches 4 Parameter Estimation 5 Applications 6 Concluding Remarks References Cost of Energy for Distributed Energy Resources-Based Power Generation in a Rural Microgrid: Impact of Controlling Parameters 1 Introduction 2 Study Area 3 Load Assessment 4 Resource Estimation 5 Formulating the Problem 6 Results and Discussion 7 Conclusion References Image Processing Adaptive Learning Rate-Based Convolutional Neural Network Models for Brain Tumor Images Classification 1 Introduction 2 Learning Rate 2.1 Scheduling Learning Rate 2.2 Adaptive Learning Rate 3 Materials and Metrics 4 Methodology and Experimental Results 4.1 Data Preprocessing 4.2 Adaptive CNN Models Development 5 Conclusion and Future Enhancements 1. References Extended Discrete Cosine Transform 1 Introduction 2 Discrete Cosine Transform 3 The Proposed Method 4 Image Metrics 5 Performance Evaluation Metrics 6 Results and Discussion 6.1 Lena Image 6.2 Mandrill Image 6.3 Peppers Image 6.4 Boat Image 6.5 Computing Time 7 Conclusions References Image Reconstruction from Geometric Moments via Cascaded Digital Filters 1 Introduction 2 Proposed Method 2.1 Inverse Coefficient Matrix 2.2 Subtractor Circuit 3 Experimental Results and Discussion 3.1 Image Reconstruction from Geometric Moments 3.2 Reconstruction Error and CPU Elapsed Time 4 Conclusion References Background Preserved and Feature-Oriented Contrast Improvement Using Weighted Cumulative Distribution Function for Digital Mammograms 1 Introduction 1.1 HE Partition-Based Methods 1.2 Adaptive Histogram Equalization (AHE) and Its Variants 1.3 Unsharp Masking (UM)-Based Methods 2 The Proposed Background Preserved and Feature-Oriented Contrast Improvement (BPFO-CI) Method 2.1 Implementation Mechanism of BPFO-CI 2.2 Algorithm for Background Preserved and Feature-Oriented Contrast Improvement Using Weighted Cumulative Distribution Function 3 The Experimental of BPFO-CI 3.1 Results and Discussion 4 Conclusion References Control Theory and Its Applications Finite-Time Passification of Fractional-Order Recurrent Neural Networks with Proportional Delay and Impulses: An LMI Approach 1 Introduction 2 Model Description 3 Basic Results and Definitions 4 Theoretical Results 4.1 Analysis for FONNs Without Impulses 4.2 Analysis for FONNs with Impulses 5 Numerical Simulations 6 Conclusion and Future Directions References Synchronization of Delayed Fractional-Order Memristive BAM Neural Networks 1 Introduction 2 System Formulation and Preliminaries 3 Main Results 4 Illustrative Example 5 Conclusion References Graphs and Networks r-Dynamic Chromatic Number of Extended Neighborhood Corona of Complete Graph with Some Graphs 1 Introduction 2 Preliminaries 3 Results 4 Conclusion References Corona Domination Number of Graphs 1 Introduction 2 Characterization of Corona Domination Number of a Graph 3 Corona Domination Number for Some Standard Graphs 4 Conclusion References An AHP-Based Unmanned Aerial Vehicle Selection for Data Collection in Wireless Sensor Networks 1 Introduction 2 Motivation 3 Related Works 4 Proposed Technique 4.1 AHP-Based Mobile Sink Selection Technique 5 Implementation Details 5.1 Virtual Grid-Based Geographic Routing-AHP Technique 5.2 Multiple Ring-Based Nested Routing-AHP Technique 6 Performance Analysis 6.1 Performance Analysis on Energy Consumption 6.2 Performance Analysis on Average Delay 6.3 Performance Analysis on Packet Delivery Ratio 7 Statistical Analysis of the Proposed Techniques 7.1 Two-Tailed Test 8 Conclusion References On the Characteristic Polynomial of the Subdivision-Vertex Join of Graphs 1 Introduction 2 Adjacency Characteristic Polynomial 3 Laplacian Characteristic Polynomial 4 Signless Laplacian Characteristic Polynomial 5 Conclusion References Genus and Book Thickness of the Inclusion Ideal Graph of a Ring 1 Introduction 2 Preliminaries 3 Genus of In(R) 4 Crosscap of In(R) 5 Book Thickness of In(R) 6 Conclusion References Inventory Control An EOQ Inventory Model with Shortage Backorders and Incorporating a Learning Function in Fuzzy Parameters 1 Introduction 2 Review of Basic Concepts 2.1 Fuzzy Numbers 2.2 Arithmetic Operations on Fuzzy Numbers 2.3 Defuzzification of Fuzzy Numbers 2.4 Wright's Learning Function 3 Formulation of Fuzzy Model and Its Solution Procedure 4 Impact of Wright's Learning Function on Fuzzy Input Parameters 4.1 Case-1: 0 4.2 Case-2: 0 5 Numerical Examples 6 Sensitivity Analysis 7 Conclusion References A Comparison Between Fuzzy and Intuitionistic Fuzzy Optimization Technique for Profit and Production of Crops in Ariyalur District 1 Introduction 2 Study Area and Crops 3 Fuzzy Optimization Technique 3.1 Computational Algorithm 3.2 Notations 4 Intuitionistic Fuzzy Optimization Technique 4.1 Algorithm 5 Problem Illustration 6 Conclusion References