دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: هندسه و توپولوژی ویرایش: 1 نویسندگان: Jonas Hall. Thomas Lingefjärd سری: ISBN (شابک) : 1119102723, 9781119102724 ناشر: Wiley سال نشر: 2016 تعداد صفحات: 570 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Mathematical Modeling: Applications with GeoGebra به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی ریاضی: کاربردها با GeoGebra نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
A logical problem-based introduction to the use of GeoGebra for mathematical modeling and problem solving within various areas of mathematics
A well-organized guide to mathematical modeling techniques for evaluating and solving problems in the diverse field of mathematics, Mathematical Modeling: Applications with GeoGebra presents a unique approach to software applications in GeoGebra and WolframAlpha. The software is well suited for modeling problems in numerous areas of mathematics including algebra, symbolic algebra, dynamic geometry, three-dimensional geometry, and statistics. Featuring detailed information on how GeoGebra can be used as a guide to mathematical modeling, the book provides comprehensive modeling examples that correspond to different levels of mathematical experience, from simple linear relations to differential equations.
Each chapter builds on the previous chapter with practical examples in order to illustrate the mathematical modeling skills necessary for problem solving. Addressing methods for evaluating models including relative error, correlation, square sum of errors, regression, and confidence interval, Mathematical Modeling: Applications with GeoGebra also includes:
Mathematical Modeling: Applications with GeoGebrais ideal for upper-undergraduate and graduate-level courses in mathematical modeling, applied mathematics, modeling and simulation, operations research, and optimization. The book is also an excellent reference for undergraduate and high school instructors in mathematics.
TITLE PAGE COPYRIGHT PAGE CONTENTS PREFACE INTRODUCTION ABOUT THE COMPANION WEBSITE CHAPTER 1 SOME INTRODUCTORY PROBLEMS 1.1 TICKET PRICES 1.2 HOW LONG WILL THE PASTURE LAST IN A FIELD? 1.3 A BIT OF CHEMISTRY 1.4 SYDNEY HARBOR BRIDGE 1.5 PERSPECTIVE 1.6 LAKE ERIE’S AREA 1.7 ZEBRA CROSSING 1.8 THE SECURITY CASE 1.9 PERSONAL MEASUREMENTS 1.10 HEIGHT OF THE BODY 1.11 LAMP POLE 1.12 THE SKYSCRAPER 1.13 THE FENCE 1.14 THE CORRIDOR 1.15 BIRD FEEDERS 1.16 GOLF CHAPTER 2 LINEAR MODELS 2.1 ARE WOMEN FASTER THAN MEN? 2.2 TAXI COMPANIES 2.3 CRIME DEVELOPMENT 2.4 THE METAL WIRE 2.5 OPTIONS TRADING 2.6 FLYING FOXES 2.7 KNOTS ON A ROPE 2.8 THE CANDLE 2.9 HOOKE’S LAW 2.10 RANKING 2.11 DOLBEAR’S LAW 2.12 MAN AT OFFICE 2.13 A STACK OF PAPER 2.14 MILK PRODUCTION IN COWS CHAPTER 3 NONLINEAR EMPIRICAL MODELS I 3.1 GALAXY ROTATION 3.2 OLYMPIC POLE VAULTING 3.3 KEPLER’S THIRD LAW 3.4 DENSITY 3.5 YEAST 3.6 COOLING I 3.7 MODELING THE POPULATION OF IRELAND 3.8 THE RULE OF 72 3.9 THE FISH FARM I 3.10 NEW ORLEANS TEMPERATURES 3.11 THE RECORD MILE 3.12 THE ROCKET 3.13 STOPPING DISTANCES 3.14 A BOTTLE WITH HOLES 3.15 THE PENDULUM 3.16 RADIO RANGE 3.17 RUNNING 400 METERS 3.18 BLUE WHALE 3.19 USED CARS 3.20 TEXTS CHAPTER 4 NONLINEAR EMPIRICAL MODELS II 4.1 COOLING II 4.2 BODY SURFACE AREA 4.3 WARM-BLOODED ANIMALS 4.4 CONTROL OF INSECT PESTS 4.5 SELLING MAGAZINES FOR CHRISTMAS 4.6 TUMOR 4.7 FREE FALL 4.8 CONCENTRATION 4.9 AIR CURRENT 4.10 TIDES 4.11 FITNESS 4.12 LIFE EXPECTANCY VERSUS AVERAGE INCOME 4.13 STOCKHOLM CENTER 4.14 WORKFORCE 4.15 POPULATION OF SWEDEN 4.16 WHO KILLED THE LION? 4.17 AIDS IN UNITED STATES 4.18 THERMAL COMFORT 4.19 WATTS AND LUMEN 4.20 THE BEAUFORT SCALE 4.21 THE VON BERTALANFFY GROWTH EQUATION CHAPTER 5 MODELING WITH CALCULUS 5.1 THE FISH FARM II 5.2 TITRATION 5.3 THE BOWL 5.4 THE AIRCRAFT WING 5.5 THE GATEWAY ARCH IN ST. LOUIS 5.6 VOLUME OF A PEAR 5.7 STORM FLOOD 5.8 EXERCISE 5.9 BICYCLE REFLECTORS 5.10 CARDIAC OUTPUT 5.11 MEDICATION 5.12 NEW SONG ON SPOTIFY 5.13 TEMPERATURE CHANGE 5.14 TAR 5.15 BICYCLE REFLECTORS REVISITED 5.16 GAS PRESSURE 5.17 AIRBORNE ATTACKS 5.18 RAILROAD TRACKS 5.19 COBB–DOUGLAS PRODUCTION FUNCTIONS 5.20 FUTURE CARBON DIOXIDE EMISSIONS 5.21 OVERTAKING 5.22 POPULATION DYNAMICS OF INDIA 5.23 DRAG RACING 5.24 SUPER EGGS 5.25 MEASURING STICKS 5.26 THE LECTURE HALL 5.27 PROGRESSIVE BRAKING DISTANCES 5.28 CYLINDER IN A CONE CHAPTER 6 USING DIFFERENTIAL EQUATIONS 6.1 COOLING III 6.2 MOOSE HUNTING 6.3 THE WATER CONTAINER 6.4 SKYDIVING 6.5 FLU EPIDEMICS 6.6 USA’S POPULATION 6.7 PREDATORS AND PREY 6.8 SMOKE 6.9 ALCOHOL CONSUMPTION 6.10 WHO KILLED THE MATHEMATICS TEACHER 6.11 RIVER CLAMS 6.12 CONTAMINATION 6.13 DAMPED OSCILLATION 6.14 THE POTASSIUM–ARGON METHOD 6.15 BARIUM, LANTHANUM, AND CERIUM 6.16 IODINE 6.17 ENDEMIC EPIDEMICS 6.18 WAR 6.19 FARMERS, BANDITS, AND RULERS 6.20 EPIDEMICS WITHOUT IMMUNITY 6.21 ZOMBIE APOCALYPSE I 6.22 ZOMBIE APOCALYPSE II CHAPTER 7 GEOMETRICAL MODELS 7.1 THE LOOPING PEN 7.2 COMPARING AREAS 7.3 CROSSING LINES 7.4 POINTS IN A TRIANGLE 7.5 TRISECTED AREA 7.6 SPIROGRAPH 7.7 CONNECTED LP PLAYERS 7.8 FOLDING PAPER 7.9 THE LOCOMOTIVE 7.10 MAXIMUM VOLUME 7.11 PASCAL’S SNAIL OR LIMAçoN 7.12 EQUILATERAL TRIANGLE DISSECTION 7.13 DIVIDING THE SIDES OF A TRIANGLE 7.14 THE PEDAL TRIANGLE 7.15 THE INFINITY DIAGRAM 7.16 DISSECTING A CIRCULAR SEGMENT 7.17 NEUBERG CUBIC ART 7.18 PHASE PLOTS FOR TRIANGLES 7.19 THE JOUKOWSKI AIRFOIL CHAPTER 8 DISCRETE MODELS 8.1 THE CABINETMAKER 8.2 WEATHER 8.3 SQUIRRELS 8.4 CHLORINE 8.5 THE DEER FARM 8.6 ANALYZING A NUMBER SEQUENCE 8.7 INNER AREAS IN A SQUARE 8.8 INNER AREAS IN A TRIANGLE 8.9 A CLIMATE MODEL BASED ON ALBEDO 8.10 TRAFFIC JAM 8.11 WILDFIRE 8.12 A MODERN CARPENTER 8.13 CONWAY’S GAME OF LIFE 8.14 MATRIX TAXIS 8.15 THE CAR PARK 8.16 SELECTING A COLLAGE 8.17 APPORTIONMENT 8.18 STEINER TREES FOR REGULAR POLYGONS 8.19 HUGS AND HIGH FIVES 8.20 PYTHAGOREAN TRIPLES 8.21 CREDITS 8.22 THE PIANO CHAPTER 9 MODELING IN THE CLASSROOM 9.1 THE TEACHER CREATING DIAGRAMS 9.2 STUDENT’S LAB REPORTS 9.3 MAKING SCREENCAST INSTRUCTIONS 9.4 DEMONSTRATIONS 9.5 STUDENTS INVESTIGATING CONSTRUCTIONS 9.6 WORKING IN GROUPS 9.7 STUDENTS CONSTRUCTING MODELS 9.8 BROADER ASSIGNMENTS 9.9 THE SAME OR DIFFERENT ASSIGNMENTS 9.10 PREVIOUS ASSIGNMENTS 9.11 THE CONSULTANCY BUREAU CHAPTER 10 ASSESSING MODELING 10.1 TO EVALUATE MATHEMATICAL MODELING ASSIGNMENTS 10.2 CONCRETIZING GRADING CRITERIA 10.3 EVALUATING STUDENTS’ WORK CHAPTER 11 ASSESSING MODELS 11.1 RELATIVE ERROR 11.2 CORRELATION 11.3 SUM OF SQUARED ERRORS 11.4 SIMPLE LINEAR REGRESSION 11.5 MULTIPLE REGRESSION ANALYSIS 11.6 NONLINEAR REGRESSION 11.7 CONFIDENCE INTERVALS 11.8 2D CONFIDENCE INTERVAL TOOLS CHAPTER 12 INTERPRETING MODELS 12.1 MATHEMATICAL REPRESENTATIONS 12.2 GRAPHICAL REPRESENTATIONS 12.3 A SAMPLE MODEL INTERPRETED 12.4 CREATING THE MODEL APPENDIX A INTRODUCTION TO GEOGEBRA A.1 GEOGEBRATUBE AND THE ECOSYSTEM A.2 GEOGEBRABOKS A.3 GEOGEBRA ON DIFFERENT DEVICES A.4 THE USER INTERFACE A.5 CUSTOMIZING GEOGEBRA A.6 SLIDERS A.7 BASIC SKILLS AND EXERCISES A.8 WRITING INSTRUCTIONS A.9 REMEMBER APPENDIX B FUNCTION LIBRARY B.1 DIFFERENT FUNCTIONS AND THEIR PARAMETRIZATIONS B.2 LINEAR TRANSFORMATIONS IN GENERAL B.3 DRAGGING A FUNCTION IN GEOGEBRA B.4 G EOGEBRA’S GENERIC FITTING COMMANDS B.5 EXAMPLE OF A GENERIC FIT INTEGER PROPERTIES INDEX LIST OF PROBLEMS BY NAME EULA