ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mathematical modeling of unsteady inviscid flows

دانلود کتاب مدل سازی ریاضی جریانهای ناپایدار ناپایدار

Mathematical modeling of unsteady inviscid flows

مشخصات کتاب

Mathematical modeling of unsteady inviscid flows

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9783030183189, 9783030183196 
ناشر: Springer 
سال نشر: 2019 
تعداد صفحات: 473 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Mathematical modeling of unsteady inviscid flows به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدل سازی ریاضی جریانهای ناپایدار ناپایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface......Page 7
Expected Level of Preparation......Page 8
Other Sources......Page 9
Acknowledgments......Page 11
Contents......Page 12
1.1 A Motivating Example Problem......Page 20
1.1.1 What Would Viscosity Do?......Page 21
1.1.2 The Inviscid Model......Page 22
1.2 Organization of the Book......Page 24
2.1 Reference Frames......Page 25
2.2 Body Definitions......Page 26
2.3 Vector Notation......Page 28
2.4 Complex Notation......Page 34
2.5 Plücker Notation......Page 35
Note 2.5.1: Plücker Transform Matrices in Two Dimensions......Page 38
Note 2.5.2: Setting the Pivot Axis of a Translating and Rotating Body......Page 39
3 Foundational Concepts......Page 42
3.1.1 The Velocity Field and Flow Potentials......Page 43
Result 3.1: Volume Flow Rate and Vector Potential......Page 44
3.1.2 The No-Penetration Condition......Page 45
3.1.3 Vorticity Transport Equation......Page 46
3.1.4 Kinetic Energy and Rate of Work......Page 47
Result 3.2: A Form of the Kinetic Energy in Three Dimensions......Page 48
Note 3.1.2: Another Form of the Rotational Part of Kinetic Energy......Page 49
3.1.5 Circulation and Its Invariance......Page 51
Result 3.3: Kelvin's Circulation Theorem......Page 53
Note 3.1.3: Other Invariants of Unbounded Inviscid Flow......Page 54
3.1.6 Helmholtz' Theorems......Page 56
3.2 Elements of Potential Flow......Page 60
3.2.1 Pressure and the Bernoulli Equation......Page 61
Note 3.2.1: Pressure in the Inertial and Windtunnel Frames......Page 62
3.2.2 Two-Dimensional Flows and the Complex Potential......Page 63
Note 3.2.2: Multi-Valuedness and the Branch Cut......Page 67
Note 3.2.3: Velocity Behavior in Corner Flows......Page 70
3.2.3 Three-Dimensional Flows......Page 73
3.3 Vortex Structures......Page 75
3.3.1 Point Vortex......Page 76
3.3.2 Vortex Filament......Page 77
Note 3.3.1: The Scalar Potential Field of a Closed Vortex Filament......Page 80
Result 3.4: Volume Flow Rate Induced by a Closed Filament......Page 82
Result 3.5: Strength of a Vortex Sheet......Page 83
Note 3.3.2: Parameterization of a Vortex Sheet......Page 84
3.4 Other Surface Distributions of Singularities......Page 89
3.5.1 Two-Dimensional Vortex Sheet as a Set of Point Vortices......Page 91
3.5.2 Vortex Filament or Vortex Pair as a Double-Layer Potential......Page 93
3.5.3 Vortex Sheet as a Double-Layer Potential......Page 94
3.5.4 Three-Dimensional Vortex Sheet as a Mesh of Vortex Filaments......Page 95
3.6 Free and Bound Vortex Sheets......Page 97
3.6.1 Free Vortex Sheets......Page 98
Note 3.6.1: Parameterization of a Vortex Sheet by Circulation......Page 99
Result 3.6: Characteristics of a Free Vortex Sheet......Page 101
Note 3.6.2: The Surface Vortex Sheet and the No-Penetration Condition......Page 102
Note 3.6.3: Complex Form of the No-Penetration Condition......Page 103
Note 3.6.4: No-Penetration Condition on a Sheet Immersed in the Fluid......Page 104
Note 3.6.5: A Note on Point Vortices Near Thin Plates......Page 106
4 General Results of Incompressible FlowAbout a Body......Page 108
4.1 The Basic Potential Flow Problem......Page 109
4.2.1 Vector Form......Page 111
Result 4.1: Velocity Field of an Incompressible Flow in the Presence of a Body......Page 113
4.2.2 Complex Form......Page 114
4.2.3 Infinitely-Thin Plate......Page 115
4.2.4 Alternative Surface Formulations: Source and Dipole Distributions......Page 116
4.3 The Integral Equation for an Impenetrable Body......Page 118
4.3.1 Vector Form......Page 119
Result 4.3: General Integral Equation for Bound Vortex Sheet......Page 120
4.3.2 Complex Form......Page 121
4.3.3 Infinitely-Thin Plate......Page 122
4.3.4 The Double Layer Formulation......Page 123
4.4 Solution of Two-Dimensional Problem by Conformal Mapping......Page 124
Note 4.4.1: Notational Convention for Functions and Mappings......Page 126
Note 4.4.2: Solution for Rigid-Body Motion by Conformal Mapping......Page 128
4.4.2 Stationary Body in a Known Potential Flow: The Circle Theorem......Page 130
Note 4.4.3: Point Vortex Outside a Stationary Body......Page 131
Note 4.4.4: Uniform Flow Past a Stationary Body......Page 132
4.4.3 Solution via the Schwarz–Christoffel Transformation......Page 133
Note 4.4.5: Velocity Field Near a Corner, Revisited......Page 134
Note 4.4.6: Corner Intensity and the Bound Vortex Sheet Strength......Page 137
4.5 The Non-uniqueness of Two-Dimensional Potential Flow......Page 138
4.6 Decomposition of the Flow into Basis Fields......Page 142
4.6.1 Complex Form, via Conformal Mapping Solution......Page 145
Result 4.5: Two-Dimensional Velocity Field via Conformal Mapping......Page 146
4.6.2 Vector Form......Page 152
Note 4.6.1: Useful Properties of the Basis Scalar Potential Fields......Page 161
4.6.3 Flow Decomposition and the Kinetic Energy: Added Mass......Page 162
Result 4.6: Kinetic Energy of the Flow About a Rigid Body......Page 165
4.7 Multipole Expansion of the Flow Field......Page 166
4.7.1 Two-Dimensional Flow......Page 167
Result 4.7: Multipole Expansion of the Two-Dimensional Flow Field......Page 169
4.7.2 Three-Dimensional Flow......Page 170
Result 4.8: Multipole Expansion of the Three-Dimensional Flow Field......Page 172
Note 4.7.1: Multipole Coefficients in Terms of Body Vorticity......Page 173
4.7.3 Two-Dimensional Expansion in Complex Form......Page 174
Note 4.7.4: Multipole Coefficients Under Conformal Mapping......Page 176
5 Edge Conditions......Page 177
Result 5.1: The Kutta Condition......Page 178
Result 5.2: The Kutta Condition, Alternatively Stated......Page 179
5.1.1 Steady Flow......Page 180
5.1.2 Unsteady Flow......Page 181
Result 5.3: Continuity of Vortex Sheet Strengths......Page 184
Result 5.4: Giesing–Maskell Extension of the Kutta Condition......Page 186
Note 5.1.2: The Kutta Condition and the Release of Vortex Elements......Page 188
5.2 Application of the Kutta Condition......Page 189
Result 5.5: The Constraint Form of the Kutta Condition......Page 190
5.3 Traditional Enforcement of the Kutta Condition: A Contrast......Page 192
5.4 Generalized Edge Conditions......Page 194
Result 5.6: Critical Edge Suction Condition......Page 195
6 Force and Moment on a Body......Page 199
Result 6.1: Surface Integral Form 1 of Force and Moment......Page 200
Result 6.2: Surface Integral Form 2 of Force and Moment......Page 201
Note 6.1.1: Force and Moment in the Windtunnel Frame......Page 202
6.2 Force and Moment via Vorticity Impulse......Page 203
6.2.1 Vectorial Forms......Page 204
Result 6.3: Force as Rate of Change of Linear Impulse......Page 206
Result 6.4: Moment as Rate of Change of Angular Impulse......Page 207
Note 6.2.1: A Vorticity Form of the Impulse......Page 208
Note 6.2.2: Another Form of the Moment's Relationship with Impulse......Page 209
Note 6.2.3: Impulse Defined About Points Other than the Origin......Page 210
Note 6.2.4: Impulse Formulas in the Presence of a Uniform Flow......Page 211
Result 6.5: Complex Form of Force as Rate of Change of Linear Impulse......Page 212
Result 6.6: Complex Form of Moment as Rate of Change of Angular Impulse......Page 213
Note 6.2.5: Impulses Obtained Through Conformal Mapping......Page 214
6.3 Reconciliation of Force via Traction and via Impulse......Page 215
6.3.1 The Force and Moment on a Region of Vorticity......Page 216
Result 6.7: The Force and Moment on a Vortex......Page 218
6.3.2 The Spurious Force and Moment on Vorticity......Page 220
6.3.3 Spurious Force and Moment on a Vortex in the Presence of a Body......Page 223
Result 6.8: Spurious Force and Moment on a Vortex Element Near a Body......Page 226
6.3.4 Revisiting the Traction Force and Moment on the Body......Page 227
Result 6.9: Force and Moment on a Body via Traction over Its Surface......Page 228
6.4 Edge Suction......Page 229
Result 6.10: Edge Suction and the Suction Coefficient......Page 231
6.5 Decomposition of the Force into Contributors......Page 232
6.5.1 Complex Form, via Conformal Mapping Solution......Page 233
6.5.2 Decomposed Force and Moment, Generalized......Page 236
Result 6.11: Decomposed Force and Moment on a Rigid Body......Page 238
Note 6.5.1: Plücker Added Mass Matrices in Two Dimensions......Page 239
6.6 The Contribution of Fluid Vorticity to Force and Moment......Page 242
6.6.1 Basic Definitions of the Vorticity-Induced Impulses......Page 243
6.6.2 The Rates of Change of the Vorticity-Induced Impulses......Page 244
Result 6.12: Vorticity-Induced Impulse and the Basis Vector Potentials......Page 245
Note 6.6.1: The Elemental Contribution to Vorticity-Induced Impulses......Page 248
Result 6.13: Time Derivative of the Vorticity-Induced Impulses......Page 249
Result 6.14: The Force and Moment on a Rigid Body......Page 251
6.6.3 The Rate of Change of Impulse for Singular Vortex Elements......Page 253
6.6.4 Alternative Derivation of the Force and Moment......Page 255
6.7 The Mechanical Energy Equation, Revisited......Page 259
7 Transport of Vortex Elements......Page 261
7.1 Planar Vortex Elements......Page 262
Result 7.1: Transport of a Point Vortex in the Physical Plane......Page 263
7.1.1 Justification for Ignoring the Self-induction of a Point Vortex......Page 264
7.1.2 Vortex Transport in the Conformal Mapping Plane: The Routh Correction......Page 265
Result 7.2: The Routh Correction......Page 266
7.1.3 Vortex Clouds and Sheets......Page 268
Note 7.1.1: Efficient Calculation of Vortex Cloud Transport......Page 269
Result 7.4: Evolution Equation for a Free VortexSheet in Two Dimensions......Page 270
7.1.4 Variable-Strength Point Vortices......Page 271
7.1.5 Blob Regularization......Page 276
7.2 Vortex Filaments......Page 279
Result 7.6: Evolution Equation for a Vortex Filament......Page 281
8 Flow About a Two-Dimensional Flat Plate......Page 284
8.1 Basic Notation......Page 285
8.2 Three Approaches to Solving for the Flow......Page 288
8.2.1 Approach 1: Conformal Transformation from the Circle Plane......Page 289
8.2.2 Approach 2: Inversion of the Cauchy Integral......Page 295
Result 8.1: Cauchy Integral Equation for a Rigid Flat Plate......Page 296
8.2.3 Approach 3: Fourier–Chebyshev Expansion......Page 302
Result 8.2: Fourier–Chebyshev Form of the Bound Vortex Sheet Strength......Page 304
Note 8.2.1: Fourier–Chebyshev for Wavy Plate or Sinusoidal Gust......Page 306
Result 8.3: Fourier–Chebyshev Form of the Velocity and Potential Fields......Page 308
8.3 Force and Moment......Page 310
Result 8.4: Force and Moment on a Flat Plate......Page 311
Result 8.5: Local Pressure Jump Across a Flat Plate......Page 314
Note 8.3.1: Edge Suction on a Two-Dimensional Flat Plate......Page 315
8.4.1 At the Trailing Edge: Thin Airfoil Theory......Page 317
8.5 Classical Results......Page 324
8.5.1 Steady Flow at Fixed Small Angle of Attack......Page 325
Note 8.5.1: Alternative Enforcement of the Trailing-Edge Kutta Condition......Page 326
8.5.2 General Background on Classical Unsteady Results......Page 328
8.5.3 Oscillatory Motion: Theodorsen......Page 331
Result 8.6: Low-Amplitude Oscillatory Motion of a Flat Plate......Page 335
8.5.4 Impulsive Change of Motion: Wagner......Page 336
Result 8.7: Force and Moment due to a Sudden Change of Motion......Page 338
Note 8.5.2: The Wagner Function......Page 340
8.5.5 Sinusoidal Gust Response......Page 342
8.5.6 Sharp-Edge Gust......Page 345
8.6 Generalized Edge Conditions and Their Interpretation......Page 346
8.7 A Deforming Plate......Page 349
9 Examples of Two-Dimensional FlowModeling......Page 355
9.1 Time Marching......Page 356
Result 9.1: State Update......Page 357
9.2 Co-rotating Vortex Patches......Page 358
9.3 Interaction of Vortex Patches with a Bluff Body......Page 362
9.4.1 Free Vortex Sheet Model......Page 366
Result 9.2: The Minimum Physical Length Scale in an Inviscid Flow......Page 373
9.4.2 Variable-Strength Vortex Model......Page 375
9.5 Flow Past a NACA Airfoil......Page 378
10.1 Ellipsoidal Coordinates and Harmonics......Page 382
10.2 Translation of a General Ellipsoidal Body......Page 385
10.3 Rotational Motion of a General Ellipsoidal Body......Page 392
10.4 Added Mass......Page 393
Result 10.1: The Added Mass of an Ellipsoid......Page 395
A.1.1 Cartesian Index Notation......Page 401
A.1.2 Derivatives of Fundamental Solutions of Laplace's Equation......Page 404
A.1.3 The Divergence Theorem and Some Relevant Uses......Page 405
Result A.1: Scalar Form of Green's Theorem......Page 412
Result A.2: Vector Form of Green's Theorem......Page 413
Result A.3: Scalar Form of Extended Green's Theorem......Page 414
Result A.4: Vector Form of Extended Green's Theorem......Page 415
A.1.4 Stokes' Theorem and Some Relevant Uses......Page 417
Result A.5: Continuity of Tangent Component of Vector Fields......Page 420
Result A.6: Equivalence of Two Forms of Surface Singularity Distributions......Page 421
A.1.6 Field Quantities and Their Rate of Change......Page 423
A.1.7 Time Differentiation of Spatial Integrals......Page 424
A.2 Useful Tools from Complex Analysis......Page 428
A.2.1 Basic Properties......Page 429
A.2.2 The Cauchy Integral and Residue Theorem......Page 432
A.2.3 Conformal Mapping......Page 437
A.2.4 The Joukowski and Kármán–Trefftz Airfoils......Page 443
A.2.5 The Schwarz–Christoffel Transformation......Page 448
Result A.7: Power Series Representation of Schwarz–Christoffel Map......Page 450
Note A.2.1: Schwarz–Christoffel Transformation for Rectangular Bodies......Page 453
A.3.1 Notes on an Important Factor......Page 455
A.3.2 Properties of Chebyshev Polynomials......Page 456
A.3.3 Contour Integrals of Interest......Page 464
References......Page 467
Index......Page 471




نظرات کاربران