دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Brett Borden. James Luscombe.
سری:
ISBN (شابک) : 9781119579694
ناشر: Wiley
سال نشر: 2020
تعداد صفحات: 445
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Mathematical methods in physics, engineering, and chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های ریاضی در فیزیک، مهندسی و شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright Page Contents Preface Chapter 1 Vectors and linear operators 1.1 The linearity of physical phenomena 1.2 Vector spaces 1.2.1 A word on notation 1.2.2 Linear independence, bases, and dimensionality 1.2.3 Subspaces 1.2.4 Isomorphism of N-dimensional spaces 1.2.5 Dual spaces 1.3 Inner products and orthogonality 1.3.1 Inner products 1.3.2 The Schwarz inequality 1.3.3 Vector norms 1.3.4 Orthonormal bases and the Gram–Schmidt process 1.3.5 Complete sets of orthonormal vectors 1.4 Operators and matrices 1.4.1 Linear operators 1.4.2 Representing operators with matrices 1.4.3 Matrix algebra 1.4.4 Rank and nullity 1.4.5 Bounded operators 1.4.6 Inverses 1.4.7 Change of basis and the similarity transformation 1.4.8 Adjoints and Hermitian operators 1.4.9 Determinants and the matrix inverse 1.4.10 Unitary operators 1.4.11 The trace of a matrix 1.5 Eigenvectors and their role in representing operators 1.5.1 Eigenvectors and eigenvalues 1.5.2 The eigenproblem for Hermitian and unitary operators 1.5.3 Diagonalizing matrices 1.6 Hilbert space: Infinite-dimensional vector space Exercises Chapter 2 Sturm–Liouville theory 2.1 Second-order differential equations 2.1.1 Uniqueness and linear independence 2.1.2 The adjoint operator 2.1.3 Self-adjoint operator 2.2 Sturm–Liouville systems 2.3 The Sturm–Liouville eigenproblem 2.4 The Dirac delta function 2.5 Completeness 2.6 Recap Summary Exercises Chapter 3 Partial differential equations 3.1 A survey of partial differential equations 3.1.1 The continuity equation 3.1.2 The diffusion equation 3.1.3 The free-particle Schr¨odinger equation 3.1.4 The heat equation 3.1.5 The inhomogeneous diffusion equation 3.1.6 Schr¨odinger equation for a particle in a potential field 3.1.7 The Poisson equation 3.1.8 The Laplace equation 3.1.9 The wave equation 3.1.10 Inhomogeneous wave equation 3.1.11 Summary of PDEs 3.2 Separation of variables and the Helmholtz equation 3.2.1 Rectangular coordinates 3.2.2 Cylindrical coordinates 3.2.3 Spherical coordinates 3.3 The paraxial approximation 3.4 The three types of linear PDEs 3.4.1 Hyperbolic PDEs 3.4.2 Parabolic PDEs 3.4.3 Elliptic PDEs 3.5 Outlook Summary Exercises Chapter 4 Fourier analysis 4.1 Fourier series 4.2 The exponential form of Fourier series 4.3 General intervals 4.4 Parseval’s theorem 4.5 Back to the delta function 4.6 Fourier transform 4.7 Convolution integral Summary Exercises Chapter 5 Series solutions of ordinary differential equations 5.1 The Frobenius method 5.1.1 Power series 5.1.2 Introductory example 5.1.3 Ordinary points 5.1.4 Regular singular points 5.2 Wronskian method for obtaining a second solution 5.3 Bessel and Neumann functions 5.4 Legendre polynomials Summary Exercises Chapter 6 Spherical harmonics 6.1 Properties of the Legendre polynomials, Pl(x) 6.1.1 Rodrigues formula 6.1.2 Orthogonality 6.1.3 Completeness 6.1.5 Recursion relations 6.2 Associated Legendre functions, Plm (x) 6.3 Spherical harmonic functions, Y ml (θ, φ) 6.4 Addition theorem for Y ml (θ, φ) 6.5 Laplace equation in spherical coordinates Summary Exercises Chapter 7 Bessel functions 7.1 Small-argument and asymptotic forms 7.1.1 Limiting forms for small argument 7.1.3 Hankel functions 7.2 Properties of the Bessel functions, Jn(x) 7.2.1 Series associated with the generating function 7.2.2 Recursion relations 7.2.3 Integral representation 7.3 Orthogonality 7.4 Bessel series 7.5 The Fourier-Bessel transform 7.6 Spherical Bessel functions 7.6.1 Reduction to elementary functions 7.6.2 Small-argument forms 7.6.3 Asymptotic forms 7.6.4 Orthogonality and completeness 7.7 Expansion of plane waves in spherical harmonics Summary Exercises Chapter 8 Complex analysis 8.1 Complex functions 8.2 Analytic functions: differentiable in a region 8.2.1 Continuity, differentiability, and analyticity 8.2.2 Cauchy–Riemann conditions 8.2.3 Analytic functions are functions only of z = x + iy 8.2.4 Useful definitions 8.3 Contour integrals 8.4 Integrating analytic functions 8.5 Cauchy integral formulas 8.5.1 Derivatives of analytic functions 8.5.2 Consequences of the Cauchy formulas 8.6 Taylor and Laurent series 8.6.1 Taylor series 8.6.2 The zeros of analytic functions are isolated 8.6.3 Laurent series 8.7 Singularities and residues 8.7.1 Isolated singularities, residue theorem 8.7.2 Multivalued functions, branch points, and branch cuts 8.8 Definite integrals 8.8.1 Integrands containing cos θ and sin θ 8.8.2 Infinite integrals 8.8.3 Poles on the contour of integration 8.9 Meromorphic functions 8.10 Approximation of integrals 8.10.1 The method of steepest descent 8.10.2 The method of stationary phase 8.11 The analytic signal 8.11.1 The Hilbert transform 8.11.2 Paley–Wiener and Titchmarsh theorems 8.11.3 Is the analytic signal, analytic? 8.12 The Laplace transform Summary Exercises Chapter 9 Inhomogeneous differential equations 9.1 The method of Green functions 9.1.1 Boundary conditions 9.1.2 Reciprocity relation: G(x, x') = G(x', x) 9.1.3 Matching conditions 9.1.4 Direct construction of G(x, x') 9.1.5 Eigenfunction expansions 9.2 Poisson equation 9.2.1 Boundary conditions and reciprocity relations 9.2.2 So, what’s the Green function? 9.3 Helmholtz equation 9.3.1 Green function for two-dimensional problems 9.3.2 Free-space Green function for three dimensions 9.3.3 Expansion in spherical harmonics 9.4 Diffusion equation 9.4.1 Boundary conditions, causality, and reciprocity 9.4.2 Solution to the diffusion equation 9.4.3 Free-space Green function 9.5 Wave equation 9.6 The Kirchhoff integral theorem Summary Exercises Chapter 10 Integral equations 10.1 Introduction 10.1.1 Equivalence of integral and differential equations 10.1.2 Role of coordinate systems in capturing boundary data 10.2 Classification of integral equations 10.3 Neumann series 10.4 Integral transform methods 10.4.1 Difference kernels 10.4.2 Fourier kernels 10.5 Separable kernels 10.6 Self-adjoint kernels 10.7 Numerical approaches 10.7.1 Matrix form 10.7.2 Measurement space 10.7.3 The generalized inverse Summary Exercises Chapter 11 Tensor analysis 11.1 Once over lightly: A quick intro to tensors 11.2 Transformation properties 11.2.1 The two types of vector: Contravariant and covariant 11.2.2 Coordinate transformations 11.2.3 Contravariant vectors and tensors 11.2.4 Covariant vectors and tensors 11.2.5 Mixed tensors 11.2.6 Covariant equations 11.3 Contraction and the quotient theorem 11.4 The metric tensor 11.5 Raising and lowering indices 11.6 Geometric properties of covariant vectors 11.7 Relative tensors 11.8 Tensors as operators 11.9 Symmetric and antisymmetric tensors 11.10 The Levi-Civita tensor 11.11 Pseudotensors 11.12 Covariant differentiation of tensors Summary Exercises A Vector calculus A.1 Scalar fields A.1.1 The directional derivative A.1.2 The gradient A.2 Vector fields A.2.1 Divergence A.2.2 Curl A.2.3 The Laplacian A.2.4 Vector operator formulae A.3 Integration A.3.1 Line integrals A.3.2 Surface integrals A.4 Important integral theorems in vector calculus A.4.1 Green’s theorem in the plane A.4.2 The divergence theorem A.4.3 Stokes’ theorem A.4.4 Conservative fields A.4.5 The Helmholtz theorem A.5 Coordinate systems A.5.1 Orthogonal curvilinear coordinates A.5.2 Unit vectors A.5.4 Differential surface and volume elements A.5.5 Transformation of vector components A.5.6 Cylindrical coordinates B Power series C The gamma function, Γ(x) Recursion relation Limit formula Reflection formula Digamma function D Boundary conditions for Partial Differential Equations Summary References Index EULA