دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Wei Li
سری: Progress in Computer Science and Applied Logic 25
ISBN (شابک) : 9783764399764, 3764399775
ناشر: Birkhäuser
سال نشر: 2010
تعداد صفحات: 274
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 992 کیلوبایت
در صورت تبدیل فایل کتاب Mathematical Logic: Foundations for Information Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب منطق ریاضی: مبانی علوم اطلاعات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
منطق ریاضی شاخه ای از ریاضیات است که سیستم های بدیهی و برهان های ریاضی را موضوع مطالعه خود می داند. این کتاب نشان می دهد که چگونه می تواند پایه ای برای توسعه علم و فناوری اطلاعات فراهم کند. پنج فصل اول به طور سیستماتیک موضوعات اصلی منطق ریاضی کلاسیک، از جمله نحو و مدلهای زبانهای مرتبه اول، سیستمهای استنتاج رسمی، محاسبهپذیری و نمایشپذیری، و قضایای گودل را ارائه میکنند. در پنج فصل آخر، توسعهها و پیشرفتهای منطق ریاضی کلاسیک، بهویژه مفاهیم توالی نسخههای نظریههای رسمی و حدود آنها، سیستم حساب تجدیدنظر، طرحها (توضیحات رسمی روشها و استراتژیهای اثبات) و ویژگیهای آنها، و نظریه استنتاج استقرایی همه این مضامین به یک نظریه رسمی بدیهی سازی و کاربرد آن در فرآیند توسعه فناوری اطلاعات و نظریه های علمی کمک می کند. این کتاب همچنین پارادایم سه نوع محیط زبانی را برای نظریه ها توصیف می کند و ویژگی های اساسی مورد نیاز یک محیط فرا زبانی را ارائه می دهد. در نهایت، این کتاب با توصیف یک گردش کار برای تحقیقات علمی در عصر اطلاعات که در آن روشهای رسمی، نرمافزار تعاملی و اختراعات انسانی همگی به نفع خود استفاده میشوند، این موضوعات را گرد هم میآورد.
این کتاب مرجع ارزشمندی برای دانشجویان و پژوهشگران کارشناسی ارشد و کارشناسی ارشد در ریاضیات، علوم اطلاعات و فناوری و سایر حوزه های مرتبط علوم طبیعی است. پنج فصل اول آن به عنوان یک متن کارشناسی در منطق ریاضی عمل می کند و پنج فصل آخر برای دانشجویان فارغ التحصیل رشته های مرتبط است.
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage.
This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Content: Preface.- Glossary.- 1. Syntax of First-Order Languages.- 1.1 Symbols of first-order languages.- 1.2 Terms.- 1.3 Logical formulas.- 1.4 Free variables and substitutions.- 1.5 Godel terms of formulas.- 1.6 Proof by structural inductions.- 2. Models of First-Order Languages.- 2.1 Domains and interpretations.- 2.2 Assignments and models.- 2.3 Meanings of terms.- 2.4 Meanings of logical connective symbols.- 2.5 Meanings of formulas.- 2.6 Satisfiability and validity.- 2.7 Valid formulas on .- 2.8 Hintikka set.- 2.9 Herbrand model.- 2.10 Herbrand model with variables.- 2.11 Substitution lemma.- 3. Formal Inference Systems.- 3.1 G inference system.- 3.2 Proof trees, inference trees, and provable sequents.- 3.3 Soundness of the G inference system.- 3.4 Compactness and consistency.- 3.5 Completeness of the G inference system.- 3.6 Some commonly used inference rules.- 3.7 Proof theory and model theory.- 4. Computability and Representability.- 4.1 Formal theories.- 4.2 Elementary arithmetic theory .- 4.3 P-procedures on N.- 4.4 Church-Turhign thesis.- 4.5 Problem of representability.- 4.6 States of P-procedures.- 4.7 System of operational calculus of P-procedure statements.- 4.8 Representation of P-procedure statements.- 4.9 Representability theorem.- 5. Godel Theorems.- 5.1 Self-referential statements.- 5.2 Deciadable sets.- 5.3 Fixed point equation in .- 5.4 Godel incompleteness theorem.- 5.5 Godel consistency theorem.- 5.6 Halt problem.- 6. Sequences of Formal Theories.- 6.1 Two examples.- 6.2 Sequences of formal theories.- 6.3 Proxchemes.- 6.4 Resolution sequences.- 6.5 Sequences of default expansions.- 6.6 Forcing sequences.- 6.7 Discussions about proxchemes.- 7. Refutation by Facts and Revision Calculus.- 7.1 Necessary antecedents of formal consequences.- 7.2 New conjectures and new axioms.- 7.3 Refutation by facts and maximal contraction.- 7.4 R-calculus.- 7.5 Some examples.- 7.6 Reachability of theR-calculus.- 7.7 Soundness and completeness of the R-calculus.- 7.8 Basic theorem of testing.- 8. Version Sequences and Proxchemes.- 8.1 Versions and version sequences.- 8.2 OPEN proxcheme.- 8.3 Convergency of the P-proxcheme.- 8.4 Commutativity of the P-proxcheme.- 8.5 Independency of the P-proxcheme.- 8.6 Ideal proxchemes.- 9. Inductive Inference and Inductive Process.- 9.1 Basic terms, basic sentences, and basic instances.- 9.2 Inductive inference system A.- 9.3 Inductive version and inductive process.- 9.4 GUINA proxcheme.- 9.5 Convergency of the GUINA proxcheme.- 9.6 Commutativity of the GUINA proxcheme.- 9.7 Independency of the GUINA proxcheme.- 10. Metalanguage Environments of First-Order Languages.- 10.1 Environments of three kinds of languages.- 10.2 Basic principles of the environment of metalanguage.- 10.3 Axiomatization method.- 10.4 Formalization method.- 10.5 Workflow of scientific research.- Appendix 1 Sets and Mappings.- Appendix 2 Substitution Lemma and Its Proof.- Appendix 3 Proof of the Representability Theorem.- References.- Index.