ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mathematical Foundations for Signal Processing, Communications, and Networking

دانلود کتاب مبانی ریاضی برای پردازش سیگنال، ارتباطات و شبکه

Mathematical Foundations for Signal Processing, Communications, and Networking

مشخصات کتاب

Mathematical Foundations for Signal Processing, Communications, and Networking

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781439855133, 9781466514089 
ناشر: CRC Press 
سال نشر: 2012 
تعداد صفحات: 852 
زبان:  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 43,000



کلمات کلیدی مربوط به کتاب مبانی ریاضی برای پردازش سیگنال، ارتباطات و شبکه: علوم کامپیوتر، سیستم‌ها و معماری کامپیوتر، شبکه‌ها، مهندسی و فناوری، مهندسی برق و الکترونیک، پردازش سیگنال دیجیتال، ریاضیات و آمار برای مهندسین



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Mathematical Foundations for Signal Processing, Communications, and Networking به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی ریاضی برای پردازش سیگنال، ارتباطات و شبکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Introduction

Signal Processing Transforms, Serhan Yarkan and Khalid A. Qaraqe

Introduction

Basic Transformations

Fourier Series and Transform

Sampling

Cosine and Sine Transforms

Laplace Transform

Hartley Transform

Hilbert Transform

Discrete-Time Fourier Transform

The Z-Transform

Conclusion and Further Reading

Linear Algebra, Fatemeh Hamidi Sepehr and Erchin Serpedin

Vector Spaces

Linear Transformations

Operator Norms and Matrix Norms

Systems of Linear Equations

Determinant, Adjoint, and Inverse of a Matrix

Cramer’s Rule

Unitary and Orthogonal Operators and Matrices

LU Decomposition

LDL and Cholesky Decomposition

QR Decomposition

Householder and Givens Transformations

Best Approximations and Orthogonal Projections

Least Squares Approximations

Angles between Subspaces

Eigenvalues and Eigenvectors

Schur Factorization and Spectral Theorem

Singular Value Decomposition (SVD)

Rayleigh Quotient

Application of SVD and Rayleigh Quotient: Principal Component Analysis

Special Matrices

Matrix Operations

Further Studies

Elements of Galois Fields, Tolga Duman

Groups, Rings, and Fields

Galois Fields

Polynomials with Coefficients in GF(2)

Construction of GF(2m)

Some Notes on Applications of Finite Fields

Numerical Analysis, Vivek Sarin

Numerical Approximation

Sensitivity and Conditioning

Computer Arithmetic

Interpolation

Nonlinear Equations

Eigenvalues and Singular Values

Further Reading

Combinatorics, Walter D. Wallis

Two Principles of Enumeration

Permutations and Combinations

The Principle of Inclusion and Exclusion

Generating Functions

Recurrence Relations

Graphs

Paths and Cycles in Graphs

Trees

Encoding and Decoding

Latin Squares

Balanced Incomplete Block Designs

Conclusion

Probability, Random Variables, and Stochastic Processes, Dinesh Rajan

Introduction to Probability

Random Variables

Joint Random Variables

Random Processes

Markov Process

Summary and Further Reading

Random Matrix Theory, Romain Couillet and Merouane Debbah

Probability Notations

Spectral Distribution of Random Matrices

Spectral Analysis

Statistical Inference

Applications

Conclusion

Large Deviations, Hongbin Li

Introduction

Concentration Inequalities

Rate Function

Cramer’s Theorem

Method of Types

Sanov’s Theorem

Hypothesis Testing

Further Readings

Fundamentals of Estimation Theory, Yik-Chung Wu

Introduction

Bound on Minimum Variance — Cramer-Rao Lower Bound

MVUE Using RBLS Theorem

Maximum Likelihood Estimation

Least Squares (LS) Estimation

Regularized LS Estimation

Bayesian Estimation

Further Reading

Fundamentals of Detection Theory, Venugopal V. Veeravalli

Introduction

Bayesian Binary Detection

Binary Minimax Detection

Binary Neyman-Pearson Detection

Bayesian Composite Detection

Neyman-Pearson Composite Detection

Binary Detection with Vector Observations

Summary and Further Reading

Monte Carlo Methods for Statistical Signal Processing, Xiaodong Wang

Introduction

Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) Methods

Sequential Monte Carlo (SMC) Methods

Conclusions and Further Readings

Factor Graphs and Message Passing Algorithms, Ahmad Aitzaz, Erchin Serpedin, and Khalid A. Qaraqe

Introduction

Factor Graphs

Modeling Systems Using Factor Graphs

Relationship with Other Probabilistic Graphical Models

Message Passing in Factor Graphs

Factor Graphs with Cycles

Some General Remarks on Factor Graphs

Some Important Message Passing Algorithms

Applications of Message Passing in Factor Graphs

Unconstrained and Constrained Optimization Problems, Shuguang Cui, Man-Cho Anthony So, and Rui Zhang

Basics of Convex Analysis

Unconstrained vs. Constrained Optimization

Application Examples

Linear Programming and Mixed Integer Programming, Bogdan Dumitrescu

Linear Programming

Modeling Problems via Linear Programming

Mixed Integer Programming

Majorization Theory and Applications, Jiaheng Wang and Daniel Palomar

Majorization Theory

Applications of Majorization Theory

Conclusions and Further Readings

Queueing Theory, Thomas Chen

Introduction

Markov Chains

Queueing Models

M/M/1 Queue

M/M/1/N Queue

M/M/N/N Queue

M/M/1 Queues in Tandem

M/G/1 Queue

Conclusions

Network Optimization Techniques, Michal Pioro

Introduction

Basic Multicommodity Flow Networks Optimization Models

Optimization Methods for Multicommodity Flow Networks

Optimization Models for Multistate Networks

Concluding Remarks

Game Theory, Erik G. Larsson and Eduard Jorswieck

Introduction

Utility Theory

Games on the Normal Form

Noncooperative Games and the Nash Equilibrium

Cooperative Games

Games with Incomplete Information

Extensive Form Games

Repeated Games and Evolutionary Stability

Coalitional Form/Characteristic Function Form

Mechanism Design and Implementation Theory

Applications to Signal Processing and Communications

Acknowledgments

A Short Course on Frame Theory, Veniamin I. Morgenshtern and Helmut Bölcskei

Examples of Signal Expansions

Signal Expansions in Finite Dimensional Hilbert Spaces

Frames for General Hilbert Spaces

The Sampling Theorem

Important Classes of Frames

Index

Exercises and References appear at the end of each chapter.





نظرات کاربران