دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.] نویسندگان: Stephen J. Gustafson, Israel Michael Sigal سری: Universitext ISBN (شابک) : 9783030595616, 9783030595623 ناشر: Springer سال نشر: 2020 تعداد صفحات: 456 [453] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Mathematical Concepts of Quantum Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم ریاضی مکانیک کوانتوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ضمن تشریح ساختارهای ریاضی پایه این رشته، مقدمه ای ساده به مکانیک کوانتومی می دهد. این کتاب با مروری بر آزمایشهای فیزیکی کلیدی که منشأ پایههای فیزیکی را نشان میدهند، شروع میکند، و با توصیف مفاهیم اساسی مکانیک کوانتومی و محتوای ریاضی آنها ادامه میدهد. سپس راه خود را به موضوعات مورد علاقه جاری می کند، به ویژه آنهایی که ریاضیات نقش مهمی در آنها بازی می کند. موضوعات پیشرفته تر ارائه شده عبارتند از: سیستم های چند بدنه، نظریه آشفتگی مدرن، انتگرال های مسیر، نظریه تشدید، نظریه آدیاباتیک، فازهای هندسی، اثر آهارونوف-بوم، نظریه تابعی چگالی، سیستم های باز، نظریه تابش (غیر نسبیتی) الکترودینامیک کوانتومی)، و گروه عادی سازی مجدد. با انتخاب های مختلف از فصل ها، این کتاب می تواند به عنوان متنی برای یک دوره مقدماتی، متوسط یا پیشرفته در مکانیک کوانتومی باشد. برخی از بخش ها را می توان برای مقدمه ای بر روش های هندسی در مکانیک کوانتومی، نظریه اطلاعات کوانتومی و الکترودینامیک کوانتومی و نظریه میدان کوانتومی استفاده کرد.
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Preface Preface to the second edition Preface to the enlarged second printing From the preface to the first edition Contents 1 Physical Background 1.1 The Double-Slit Experiment 1.2 Wave Functions 1.3 State Space 1.4 The Schrӧdinger Equation 1.5 Classical Limit 2 Dynamics 2.1 Conservation of Probability 2.2 Self-adjointness 2.3 Existence of Dynamics 2.4 The Free Propagator 2.5 Semi-classical Approximation 3 Observables 3.1 The Position and Momentum Operators 3.2 General Observables 3.3 The Heisenberg Representation 3.4 Conservation Laws 3.5 Conserved Currents 4 Quantization 4.1 Quantization 4.2 Quantization and Correspondence Principle 4.3 A Particle in an External Electro-magnetic Field 4.4 Spin 4.5 Many-particle Systems 4.6 Identical Particles 4.7 Supplement: Hamiltonian Formulation of Classical Mechanics 5 Uncertainty Principle and Stability of Atoms and Molecules 5.1 The Heisenberg Uncertainty Principle 5.2 A Refined Uncertainty Principle 5.3 Application: Stability of Atoms and Molecules 6 Spectrum and Dynamics 6.1 The Spectrum of an Operator 6.2 Spectrum and Measurement Outcomes 6.3 Classification of Spectra 6.4 Bound and Decaying States 6.5 Spectra of Schrӧdinger Operators 6.6 Particle in a Periodic Potential 6.7 Angular Momentum 7 Special Cases and Extensions 7.1 The Square Well and Torus 7.2 Motion in a Spherically Symmetric Potential 7.3 The Hydrogen Atom 7.4 The Harmonic Oscillator 7.5 A Particle in a Constant Magnetic Field 7.6 Aharonov-Bohm Effect 7.7 Linearized Ginzburg-Landau Equations of Superconductivity 7.8 Ideal Quantum Gas and Ground States of Atoms 7.9 Supplement: L−equivariant functions 8 Bound States and Variational Principle 8.1 Variational Characterization of Eigenvalues 8.2 Exponential Decay of Bound States 8.3 Number of Bound States 9 Scattering States 9.1 Short-range Interactions: μ > 1 9.2 Long-range Interactions: μ ≤ 1 9.3 Wave Operators 9.4 Appendix: The Potential Step and Square Well 10 Existence of Atoms and Molecules 10.1 Essential Spectra of Atoms and Molecules 10.2 Bound States of Atoms and BO Molecules 10.3 Open Problems 11 Perturbation Theory: Feshbach-Schur Method 11.1 The Feshbach-Schur Method 11.2 The Zeeman Effect 11.3 Time-Dependent Perturbations 11.4 Appendix: Proof of Theorem 11.1 12 Born-Oppenheimer Approximation and Adiabatic Dynamics 12.1 Problem and Heuristics 12.2 Stationary Born-Oppenheimer Approximation 12.3 Complex ψy and Gauge Fields 12.4 Time-dependent Born-Oppenheimer Approximation 12.5 Adiabatic Motion 12.6 Geometrical Phases 12.7 Appendix: Projecting-out Procedure 12.8 Appendix: Proof of Theorem 12.11 13 General Theory of Many-particle Systems 13.1 Many-particle Schrӧdinger Operators 13.2 Separation of the Centre-of-mass Motion 13.3 Break-ups 13.4 The HVZ Theorem 13.5 Intra- vs. Inter-cluster Motion 13.6 Exponential Decay of Bound States 13.7 Remarks on Discrete Spectrum 13.8 Scattering States 14 Self-consistent Approximations 14.1 Hartree, Hartree-Fock and Gross-Pitaevski equations 14.2 Appendix: BEC at T=0 15 The Feynman Path Integral 15.1 The Feynman Path Integral 15.2 Generalizations of the Path Integral 15.3 Mathematical Supplement: the Trotter Product Formula 16 Semi-classical Analysis 16.1 Semi-classical Asymptotics of the Propagator 16.2 Semi-classical Asymptotics of Green’s Function 16.2.1 Appendix 16.3 Bohr-Sommerfeld Semi-classical Quantization 16.4 Semi-classical Asymptotics for the Ground State Energy 16.5 Mathematical Supplement: The Action of the Critical Path 16.6 Appendix: Connection to Geodesics 17 Resonances 17.1 Complex Deformation and Resonances 17.2 Tunneling and Resonances 17.3 The Free Resonance Energy 17.4 Instantons 17.5 Positive Temperatures 17.6 Pre-exponential Factor for the Bounce 17.7 Contribution of the Zero-mode 17.8 Bohr-Sommerfeld Quantization for Resonances 18 Quantum Statistics 18.1 Density Matrices 18.2 Quantum Statistics: General Framework 18.3 Stationary States 18.4 Hilbert Space Approach 18.5 Semi-classical Limit 18.6 Generalized Hartree-Fock and Kohn-Sham Equations 19 Open Quantum Systems 19.1 Information Reduction 19.2 Reduced dynamics 19.3 Some Proofs 19.4 Communication Channels 19.5 Quantum Dynamical Semigroups 19.6 Irreversibility 19.7 Decoherence and Thermalization 20 The Second Quantization 20.1 Fock Space and Creation and Annihilation Operators 20.2 Many-body Hamiltonian 20.3 Evolution of Quantum Fields 20.4 Relation to Quantum Harmonic Oscillator 20.5 Scalar Fermions 20.6 Mean Field Regime 20.7 Appendix: the Ideal Bose Gas 20.7.1 Bose-Einstein Condensation 21 Quantum Electro-Magnetic Field - Photons 21.1 Klein-Gordon Classical Field Theory 21.1.1 Principle of minimum action 21.1.2 Hamiltonians 21.1.3 Hamiltonian System 21.1.4 Complexification of the Klein-Gordon Equation 21.2 Quantization of the Klein-Gordon Equation 21.3 The Gaussian Spaces 21.4 Wick Quantization 21.5 Fock Space 21.6 Quantization of Maxwell’s Equations 22 Standard Model of Non-relativistic Matter and Radiation 22.1 Classical Particle System Interacting with an Electro-magnetic Field 22.2 Quantum Hamiltonian of Non-relativistic QED 22.2.1 Translation invariance 22.2.2 Fiber decomposition with respect to total momentum 22.3 Rescaling and decoupling scalar and vector potentials 22.3.1 Self-adjointness of H(ε) 22.4 Mass Renormalization 22.5 Appendix: Relative bound on I(ε) and Pull-through Formulae 23 Theory of Radiation 23.1 Spectrum of the Uncoupled System 23.2 Complex Deformations and Resonances 23.3 Results 23.4 Idea of the proof of Theorem 23.1 23.5 Generalized Pauli-Fierz Transformation 23.6 Elimination of Particle and High Photon Energy Degrees of Freedom 23.7 The Hamiltonian H0(ε, z) 23.8 Estimates on the operator H0(ε, z) 23.9 Ground state of H(ε) 23.10 Appendix: Estimates on Iε and HPρˆ(ε) 23.11 Appendix: Key Bound 24 Renormalization Group 24.1 Main Result 24.2 A Banach Space of Operators 24.3 The Decimation Map 24.4 The Renormalization Map 24.5 Dynamics of RG and Spectra of Hamiltonians 24.6 Supplement: Group Property of Rρ 25 Mathematical Supplement: Elements of Operator Theory 25.1 Spaces 25.2 Operators on Hilbert Spaces 25.3 Integral Operators 25.4 Inverses and their Estimates 25.5 Self-adjointness 25.6 Exponential of an Operator 25.7 Projections 25.8 The Spectrum of an Operator 25.9 Functions of Operators and the Spectral Mapping Theorem 25.10 Weyl Sequences and Weyl Spectrum 25.11 The Trace, and Trace Class Operators 25.12 Operator Determinants 25.13 Tensor Products 25.14 The Fourier Transform 26 Mathematical Supplement: The Calculus of Variations 26.1 Functionals 26.2 The First Variation and Critical Points 26.3 The Second Variation 26.4 Conjugate Points and Jacobi Fields 26.5 Constrained Variational Problems 26.6 Legendre Transform and Poisson Bracket 26.7 Complex Hamiltonian Systems 26.8 Conservation Laws 27 Comments on Literature, and Further Reading References Index