دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yinquan Yu. Sam Zhang
سری: Advances in Materials Science and Engineering
ISBN (شابک) : 1032021586, 9781032021584
ناشر: CRC Press
سال نشر: 2024
تعداد صفحات: 386
[387]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 Mb
در صورت تبدیل فایل کتاب Materials in Advanced Manufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد در ساخت پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین فن آوری های پردازش را برای انواع مواد در ساخت و کاربردهای پیشرفته معرفی می کند. معیارهای طراحی و ملاحظات پردازش یا دستگاهها به صورت تئوری معرفی شدهاند و شبیهسازی عددی و مطالعه تجربی گنجانده شدهاند.
ویژگیها
این کار با هدف مهندسین، محققان و دانشجویان پیشرفته در پردازش مواد و ساخت پیشرفته، به خوانندگان کمک می کند تا بفهمند کدام فناوری پردازش برای یک ماده خاص و قوانین طراحی برای یک برنامه خاص مناسب است.
This book introduces the latest processing technologies for a variety of materials in advanced manufacturing and applications. Design criteria and considerations of processing or devices are theoretically introduced, and numerical simulation and experimental study are included.
FEATURES
Aimed at engineers, researchers, and advanced students in materials processing and advanced manufacturing, this work helps readers to understand which processing technology is suitable for a specific material and the design rules for a particular application.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Series Preface Foreword Editors Contributors Chapter 1 Advanced Manufacturing of Hard Magnetic Materials 1.1 Introduction 1.2 Hard Magnetic Material 1.2.1 Types of Hard Magnetic Material 1.2.2 Structure of Hard Magnetic Material 1.2.2.1 The Crystal Structure of Ferrite PM Materials 1.2.2.2 Crystal Structure of Rare Earth PM Materials 1.2.3 Physics of Hard Magnetic Material 1.2.3.1 Basic Magnetic Properties 1.2.3.2 Curie Temperature T[sub(c)] 1.2.3.3 Stability of PM Materials 1.2.3.4 Physical Properties of PM Materials 1.2.3.5 Mechanical Properties of PM Materials 1.2.4 Computer-Aided Engineering Tools 1.3 Manufacturing Process 1.3.1 Grain Boundary Regulation 1.3.1.1 Sintering and Heat Treatment Process Optimization 1.3.1.2 Grain Refinement 1.3.2 Grain Boundary Diffusion 1.3.2.1 Overview of Grain Boundary Diffusion Technology 1.3.2.2 Grain Boundary Diffusion Technology for Non-Rare Earth Compounds 1.3.2.3 Deficiency and Development Direction of Grain Boundary Diffusion Technology 1.3.3 Rapid Quenching 1.3.3.1 Rapid Quenching Nd-Fe-B Magnetic Powder 1.3.4 Sintering Technologies 1.3.4.1 Conventional Preparation Method of Sintered Ferrite PM 1.3.4.2 Manufacturing Process of Sintered Nd-Fe-B PM Material 1.3.5 Bonding Technologies 1.3.5.1 Adhesive for Bonding Nd-Fe-B PM 1.3.5.2 Additives for Bonding Nd-Fe-B PM 1.4 Applications and Research Trends 1.4.1 High-Speed PMSM 1.4.2 High-Torque PMSM 1.5 Summary and Perspective References Chapter 2 Advanced Manufacturing of Flexible Piezoelectric Arrays 2.1 Introduction 2.2 Flexible Piezoelectric Arrays 2.2.1 Types of Flexible Piezoelectric Arrays 2.2.2 Piezoelectric Component Materials of Soft Films 2.2.3 Island–Bridge Structures of Flexible Electronics 2.2.3.1 Straight Bridge Connected Island–Bridge Structure 2.2.3.2 Curved Bridge Interconnected Island–Bridge Structure 2.2.3.3 Fractal Interconnected Island–Bridge Structure 2.2.4 Stretchable Piezoelectric Arrays 2.3 Design and Manufacturing Process 2.3.1 High-Performance Design of Mechanical Properties 2.3.2 High-Performance Design of Electrical Properties 2.3.2.1 Seeking Materials with High-Voltage Electrical Properties and High Flexibility 2.3.2.2 Designing the Microform/Microstructure of the Material Surface 2.3.2.3 Adding Dopants 2.3.2.4 Using Piezoelectric Techniques to Prepare Strain/Pressure-Driven Gate-Controlled Sensing Transistors 2.3.3 Stretchable Coil Design and Fabrication 2.3.4 Electrode Design and Process 2.3.4.1 Example of Implementation I 2.4 Summary and Perspective References Chapter 3 Application and Research Trends of Flexible Piezoelectric Arrays 3.1 Introduction 3.2 Cardiac Pacemaker with a Flexible Piezoelectric Array 3.3 Wireless Power Transfer System 3.4 Phase Control Transceiver 3.4.1 Time-Reversal Symmetry and Autocorrelation 3.4.2 The LFM Signal Based on Pulse Compression 3.4.3 Design of LFM Signal Parameters 3.4.4 Focusing Characteristic of TRM Based on the LFM Signal 3.4.5 Adaptive Filtering Deconvolution Method 3.5 Air Pressure Sensor for Large Scale 3.5.1 Introduction of Large-Area Stretchable Air Pressure Sensor Array 3.5.2 Preparation of Large-Area Stretchable Air Pressure Sensor Arrays 3.5.3 Study of Mechanical Properties and Deformation of Curved Bridges 3.5.4 Experiments with Large-Area Stretchable Barometric Sensor Arrays 3.6 Acoustic Tweezers for Micromanipulation 3.7 Summary and Perspective References Chapter 4 Advanced Manufacturing of Carbon Fiber Material 4.1 Introduction to Carbon Fibers 4.1.1 Crystal Structure of Carbon Fibers 4.1.2 Properties of Various Fibers and Whiskers 4.1.3 Precursor-Based Carbon Fibers 4.2 Processing of Carbon Fibers 4.2.1 Introduction 4.2.2 Carbon Fibers Made from Polyacrylonitrile 4.2.2.1 Polymerization 4.2.2.2 Preparation of CF Precursors 4.2.2.3 Heat Treatment 4.2.3 Carbon Fibers Made from Pitch 4.2.3.1 Pitch Precursors 4.2.3.2 Preparation of CF Precursors 4.2.3.3 Heat Treatment 4.2.4 Carbon Fibers Made from Carbonaceous Gases 4.2.5 Surface Treatment of Carbon Fibers 4.2.6 Carbon Fiber Fabrics, Preforms, and Staple Yarns 4.3 Structures and Properties of Carbon Fibers 4.3.1 Structure of Carbon Fibers 4.3.2 Mechanical Properties 4.4 Carbon Fiber Composites 4.4.1 Polymer-Matrix Composites 4.4.2 Metal-Matrix Composites 4.4.3 Carbon-Matrix Composites 4.4.4 Ceramic-Matrix Composites 4.4.5 Hybrid Composites 4.5 Trends of Carbon Fiber Composites Applications and Prospects 4.5.1 Aerospace 4.5.2 Wind Blades 4.5.3 Sports Leisure 4.5.4 Automobile 4.5.5 Others 4.5.5.1 Rail Transit 4.5.5.2 Functional Carbon Fiber Materials 4.6 Observation and Ponderation 4.6.1 World Map of Carbon Fiber 4.6.2 Development Direction of Composite Process and Application Technology 4.7 Summary and Perspective References Chapter 5 Laser Micro-Processing of Sapphire 5.1 Introduction 5.2 Sapphire Wafer 5.2.1 Sapphire Crystal Microstructure 5.2.2 Sapphire Properties 5.2.3 Singulation of Sapphire 5.2.3.1 Diamond Wire Cutting 5.2.3.2 Laser Scribe and Break 5.2.3.3 Stealth Dicing 5.2.3.4 CO[sub(2)] Laser Thermal Cracking 5.2.3.5 Laser-Induced Plasma-Assisted Cutting 5.2.3.6 Bessel Beam Cutting 5.2.3.7 Multiple Foci Laser Cutting 5.3 Effect of Surface Morphology on the Optical Properties of Sapphire 5.3.1 Surface Roughness 5.3.2 Linear Optical Property 5.3.3 Nonlinear Optical Absorption 5.3.4 Picosecond Laser Scanning of Sapphire 5.4 Multiple Foci Scanning of Sapphire 5.4.1 Multiple Foci Generation 5.4.2 Multiple Foci Scanning of Sapphire 5.4.2.1 Effect of Focal Length on Multiple Focus 5.4.2.2 Multiple Foci Scanning 5.5 Summary and Perspective Acknowledgments References Chapter 6 Metal Additive Manufacturing 6.1 Introduction 6.1.1 Definition of Additive Manufacturing 6.1.2 Classification of AM 6.1.3 Role of AM in the Manufacturing Industry 6.2 Powder Bed Fusion Systems 6.2.1 Introduction 6.2.2 PBF Processes 6.2.3 PBF Materials 6.2.4 Process Advantages and Drawbacks 6.3 Directed Energy Deposition Systems 6.3.1 Introduction 6.3.2 DED Processes 6.3.3 DED Materials 6.3.4 Advantages and Drawbacks of DED 6.4 Metal Binder Jetting Systems 6.4.1 Introduction 6.4.2 BJ Process and Materials 6.4.3 Advantages and Drawbacks 6.5 Indirect Metal Additive Manufacturing 6.5.1 AM and Casting 6.5.2 AM and Powder Metallurgy 6.5.3 Other Systems and Future Expectations 6.6 Additive Thinking 6.6.1 Design for Additive Manufacturing 6.6.2 Process Simulation 6.6.3 Service-Based Manufacturing 6.7 Summary and Perspective References Chapter 7 Additive Manufacturing of Lattice Structures 7.1 Introduction 7.2 Lattice Structures. 7.2.1 Types of Lattice Structures 7.2.2 Physical and Mechanical Properties 7.2.3 Computer-Aided Engineering Tools 7.3 Additive Manufacturing 7.3.1 Techniques 7.3.2 Materials 7.4 Applications and Research Trends 7.4.1 Energy Absorption 7.4.2 Artificial Bone Implants 7.4.3 Acoustic Metamaterials 7.4.4 Electrochemical Electrodes 7.5 Summary and Perspective References Chapter 8 Antennas Manufactured from Conductive Fabric Materials 8.1 Introduction 8.2 Comparison of Various Conductive Textiles 8.3 Manufacturing Procedure of Embroidered Devices 8.4 Design Considerations for Embroidered Antennas 8.4.1 Parasitic Elements of Conductive Textile Threads 8.4.1.1 Equivalent Circuit Model of a UHF RFID Antenna 8.4.1.2 Equivalent Circuit Model of a HF NFC Antenna 8.4.2 Bending Sensitivity of Embroidered Antennas with Different Intrinsic Resistance Values 8.4.3 Deformation Sensitivity of Embroidered Antennas with Different Geometries 8.5 RF Performance of Embroidered Textile Antennas 8.5.1 Comparison between Metallic and Embroidered Antennas 8.5.2 RF Performance of Embroidered Antennas 8.5.3 Performance Degradation on Human Bodies 8.6 Applications of Embroidered Textile Devices 8.6.1 Embroidered RFID Antenna as a Displacement Sensor for Human Activity Tracking 8.6.2 Embroidered NFC Antenna as a Strain Sensor for Respiratory Rate Measurement 8.7 Antennas for Smart Bookshelf 8.7.1 Introduction 8.7.1.1 The Need for Smart Bookshelves and Its Role in a Modern Library 8.7.1.2 Drawbacks of the Existing Systems and Antenna Solution 8.7.2 A Compact Sequential Rotated PIFA Array on the Back of the Shelf 8.7.2.1 Basic PIFA Antenna 8.7.2.2 Principles of Operation 8.7.3 A Double-Layer EBG Cp Patch Antenna on the Top of the Shelf 8.7.3.1 A Double-Layer EBG Structure 8.7.4 Antennas Arrangement on the Shelf 8.7.4.1 Antennas on the Back of the Shelf 8.7.4.2 Antennas on the Top of the Shelf 8.7.4.3 System Arrangement of the Smart Shelves 8.8 Summary and Discussion References Index