دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: M. Aulice Scibioh, B. Viswanathan سری: ISBN (شابک) : 0128198583, 9780128198582 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 391 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Materials for Supercapacitor Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد برای کاربردهای ابرخازن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد برای کاربردهای ابرخازنتصویری از وضعیت کنونی این میدان به سرعت در حال رشد ارائه می دهد. انگیزه ها، نوآوری ها، پیشرفت های مداوم در تحقیق و توسعه، مواد نوآورانه، تاثیرات و دیدگاه ها، و همچنین چالش ها و موانع فنی برای شناسایی یک ماده ایده آل برای کاربردهای عملی را پوشش می دهد. این مرجع جامع توسط الکتروشیمیدانان مفاهیم در انتخاب مواد و کاربردهای منحصر به فرد آنها را بر اساس خواص الکتروشیمیایی آنها توضیح می دهد. شیمیدانان، مهندسین شیمی و برق، دانشمندان مواد، و محققان محقق و دانشجویان علاقه مند به انرژی از این مرور کلی از بسیاری از نقاط مرجع مهم در درک مواد مورد استفاده در ابرخازن ها بهره مند خواهند شد.
Materials for Supercapacitor Applications provides a snapshot of the present status of this rapidly growing field. It covers motivations, innovations, ongoing breakthroughs in research and development, innovative materials, impacts, and perspectives, as well as the challenges and technical barriers to identifying an ideal material for practical applications. This comprehensive reference by electro-chemists explains concepts in materials selection and their unique applications based on their electro-chemical properties. Chemists, chemical and electrical engineers, material scientists, and research scholars and students interested in energy will benefit from this overview of many important reference points in understanding the materials used in supercapacitors.
Cover MATERIALS FOR SUPERCAPACITOR APPLICATIONS Copyright Preface Chapter 1 - Supercapacitor: an introduction Outline 1.1 - Supercapacitor—an emerging electrical energy storage device 1.2 - Historical perspective 1.3 - Supercapacitors and batteries as electrical energy storage devices—a comparison 1.3.1 - Faradaic and non-Faradaic processes 1.3.2 - Types of capacitors and batteries 1.3.3 - Electrochemical capacitors and batteries: comparative properties 1.4 - Outlook and scope of the monograph References Chapter 2 - Fundamentals and energy storage mechanisms—overview Outline 2.1 - Introduction 2.2 - Fundamentals 2.3 - Supercapacitors: types 2.3.1 - Electrochemical double layer capacitors (EDLCs) 2.3.2 - Pseudocapacitors 2.3.3 - Hybrid capacitors 2.3.3.1 - Composite supercapacitors 2.3.3.2 - Asymmetric supercapacitors 2.3.3.3 - Battery-type supercapacitors 2.4 - Electric double layer 2.4.1 - Helmholtz model 2.4.2 - Gouy-Chapman or diffuse model 2.4.3 - Stern model 2.4.4 - Grahame model 2.4.5 - Bockris-Devanathan-Müller (BDM) model 2.4.6 - Trasatti-Buzzanca-Conway model 2.4.7 - Marcus model 2.4.8 - Electric double layer in supercapacitors 2.5 - Pseudocapacitance 2.6 - Summary and outlook References Chapter 3 - Electrode materials for supercapacitors Outline 3.1 - Introduction 3.2 - Electrode materials 3.2.1 - Carbon materials in supercapacitors 3.2.1.1 - Activated carbon 3.2.1.2 - Mesoporous carbon 3.2.1.3 - Carbide-derived carbons (CDC) 3.2.2 - Carbon nanomaterials in supercapacitors 3.2.2.1 - EDLCs 3.2.2.1.1 - CNTs in EDLCs 3.2.2.1.2 - Graphene in EDLCs 3.2.2.1.3 - Hybrid carbon nanomaterials in EDLCs 3.2.2.2 - Pseudocapacitors (PCs) 3.2.2.2.1 - CNTs in PCs 3.2.2.2.2 - Graphene in PCs 3.2.2.2.3 - Hybrid carbon nanomaterials in PCs 3.2.2.3 - Carbon-based hybrid supercapacitors 3.2.2.3.1 - Carbon-based bendable supercapacitors (film-/fiber-shaped) 3.2.2.3.2 - Carbon-based stretchable and twistable supercapacitors (film-/fiber-shaped) 3.2.2.3.3 - Carbon-based ultrafast supercapacitors for ac-line filtering 3.3 - Perspectives on carbon for SC electrodes 3.4 - Transition metal oxides/hydroxides 3.4.1 - RuO2 3.4.2 - RuO2-based composites 3.4.2.1 - Mixed-oxide composites 3.4.2.2 - RuO2/carbon composites 3.4.2.3 - RuO2/polymer composites 3.4.3 - Manganese dioxide (MnO2) for PCs 3.4.3.1 - Recent R&D Advancements in MnO2 3.4.4 - Cobalt oxides and hydroxide for supercapacitors 3.4.4.1 - Co3O4 3.4.4.2 - Co(OH)2 3.4.5 - Nickel oxide/hydroxide (NiO/Ni(OH)2) 3.4.5.1 - NiO 3.4.5.2 - Ni(OH)2 3.4.6 - Nickel cobaltite (NiCo2O4) 3.4.7 - Tin oxide 3.4.8 - Vanadium oxides-based materials 3.4.8.1 - Vanadium pentoxide 3.4.8.2 - Other elemental metal doped vanadium pentoxide composites 3.4.8.3 - Other vanadium pentoxide composites 3.4.8.4 - Vanadium pentoxide/compound-carbon material composites 3.4.8.4.1 - Vanadium pentoxide/activated carbon or carbon fiber material composites 3.4.8.4.2 - Vanadium pentoxide/carbon nanotubes composites 3.4.8.4.3 - Vanadium pentoxide/graphene composites 3.4.8.5 - Vanadium pentoxide/conducting polymer composites 3.4.8.6 - Vanadium dioxide 3.4.8.7 - Vanadium trioxide 3.4.8.8 - Mixed valence vanadium oxide and its composite 3.4.8.9 - Nitrides 3.4.8.9.1 - Vanadium nitride 3.4.8.9.2 - Vanadium nitride/compound-carbon material composites 3.4.8.9.3 - Vanadium nitride/titanium nitride composites 3.4.8.10 - Vanadium sulfide 3.4.8.10.1 - Vanadium disulfide 3.4.8.10.2 - Vanadium tetrasulfide 3.4.8.10.3 - Silver vanadium sulfide 3.4.8.10.4 - Mixed metal vanadates 3.4.8.11 - Vanadyl phosphate 3.4.9 - Iron oxide-based materials 3.4.9.1 - Influence of preparation routes 3.4.9.1.1 - Hydrothermal method 3.4.9.1.2 - Solvothermal method 3.4.9.1.3 - Electrodeposition method 3.4.9.1.4 - Spin coating technique 3.4.9.1.5 - Electrospinning technique 3.4.9.1.6 - Sol-gel method 3.4.9.1.7 - Precipitation method 3.4.9.1.8 - Successive ionic layer adsorption and reaction (SILAR) method 3.4.9.2 - α-Fe2O3-based composites 3.4.9.2.1 - α-Fe2O3-carbon composites 3.4.9.2.2 - α-Fe2O3-conducting polymer composite 3.4.9.2.3 - α-Fe2O3-metal oxide/hydroxide composite 3.4.9.2.4 - Ternary nanocomposite 3.4.9.3 - Cell performance of α-Fe2O3 3.4.9.3.1 - Symmetric supercapacitor of α-Fe2O3 3.4.9.3.2 - Asymmetric supercapacitor (ASC) of α-Fe2O3 3.5 - Perspectives on transition metal oxides for SC electrodes 3.6 - Conclusions and outlook References Chapter 4 - Electrolyte materials for supercapacitors Outline 4.1 - Introduction 4.2 - Influence of electrolytes on the performance factors of ESs 4.2.1 - Capacitance 4.2.2 - Energy density and power density 4.2.3 - Equivalent series resistance 4.2.4 - Cycle life 4.2.5 - Self-discharge rate 4.2.6 - Thermal stability 4.3 - Electrolyte materials and compositions for electrochemical supercapacitors 4.3.1 - Aqueous electrolytes 4.3.1.1 - Strong acid electrolytes 4.3.1.1.1 - Acid electrolytes for electrical double-layer capacitors 4.3.1.1.2 - Acid electrolytes for pseudocapacitors 4.3.1.1.3 - Acidic electrolytes for hybrid capacitors 4.3.1.2 - Strong alkaline electrolytes 4.3.1.2.1 - Alkaline electrolytes for electrical double-layer capacitors 4.3.1.2.2 - Alkaline electrolytes for pseudocapacitors 4.3.1.2.3 - Alkaline electrolytes for hybrid capacitors 4.3.1.3 - Neutral electrolytes 4.3.1.3.1 - Neutral electrolytes for electrical double-layer capacitors 4.3.1.3.2 - Neutral electrolytes for pseudocapacitors 4.3.1.3.3 - Neutral electrolytes for hybrid capacitors 4.3.2 - Organic electrolytes 4.3.2.1 - General composition, properties, and ES performance of organic electrolytes 4.3.2.1.1 - Organic electrolytes for electrical double-layer capacitors 4.3.2.1.2 - Organic electrolytes for pseudocapacitors 4.3.2.1.3 - Organic electrolytes for hybrid capacitors 4.3.2.2 - Organic solvents 4.3.2.2.1 - Single organic solvents for electrolytes 4.3.2.2.2 - Solvent mixtures for electrolytes 4.3.2.3 - Conducting salts for electrolytes 4.3.2.3.1 - Effect of conducting salt on ES performance 4.3.2.3.2 - Exploration of new conducting salts 4.3.3 - Ionic liquid-based ES electrolytes 4.3.3.1 - General composition, properties and ES performance of ionic liquid electrolytes 4.3.3.2 - Solvent-free ionic liquids 4.3.3.2.1 - Solvent-free ionic liquids for EDLCs 4.3.3.2.1.1 - Aprotic ionic liquids 4.3.3.2.1.2 - Protic ionic liquids 4.3.3.2.1.3 - Mixture of ionic liquids 4.3.3.2.2 - Solvent-free ionic liquids for pseudocapacitors 4.3.3.2.3 - Solvent-free ionic liquids for hybrid electrochemical capacitors 4.3.3.3 - Mixtures of ionic liquids and organic solvents 4.3.4 - Solid- or quasi-solid-state electrolytes for ESs 4.3.4.1 - Gel polymer electrolytes 4.3.4.1.1 - Hydrogel polymer electrolytes 4.3.4.1.1.1 - Hydrogel polymer electrolytes for carbon-based electrodes 4.3.4.1.1.2 - Hydrogel polymer electrolytes for pseudocapacitors and hybrid capacitors 4.3.4.1.2 - Organogel electrolytes 4.3.4.1.3 - IL-based solid-state electrolytes 4.3.4.1.4 - Environmentally friendly gel polymer electrolytes 4.3.4.1.5 - Structural electrolytes 4.3.4.2 - Inorganic solid-state electrolytes 4.3.5 - Redox-active electrolytes 4.3.5.1 - Redox-active aqueous electrolytes 4.3.5.1.1 - Redox-active aqueous electrolytes for carbon-based ESs 4.3.5.1.2 - Redox-active aqueous electrolytes for pseudocapacitive electrodes 4.3.5.2 - Redox-active nonaqueous electrolytes 4.3.5.3 - Redox-active solid electrolytes 4.4 - Electrolyte compatibility with inactive components of ESs 4.4.1 - Compatibility with current collectors 4.4.2 - Binders 4.4.3 - Separators 4.5 - Electrolyte performance validation using supercapacitor test cells 4.6 - Challenges in the development of ES electrolytes 4.7 - Summary and future research directions References Chapter 5 - Characterization methods for supercapacitors Outline 5.1 - Introduction 5.2 - Evaluation of supercapacitors performance 5.2.1 - Overview of test procedures 5.2.2 - Electrochemical apparatus 5.2.3 - Electrochemical cell 5.2.4 - Electrochemical interface: supercapacitors 5.3 - Transient techniques 5.3.1 - Cyclic voltammetry 5.3.2 - Galvanostatic cycling 5.3.2.1 - Constant current charge or discharge 5.3.2.2 - Constant potential charge or discharge 5.3.2.3 - Constant power charge or discharge 5.3.2.4 - Leakage current and self-discharge behavior 5.3.3 - Stationary technique 5.3.3.1 - Electrochemical impedance spectroscopy 5.3.3.2 - Supercapacitor impedance 5.4 - Key scaling parameters 5.4.1 - Capacitance 5.4.2 - Evaluation of CT 5.4.3 - Evaluation of CS 5.4.4 - Major influencing factors 5.5 - Equivalent series resistance 5.5.1 - Evaluation of RESR 5.5.2 - Key influencing factors 5.6 - Operating voltage, Vo 5.6.1 - Evaluation of Vo 5.6.2 - Major factors influencing Vo 5.7 - Time constants 5.8 - Power and energy densities 5.8.1 - Power density 5.8.2 - Energy density 5.9 - Leakage and maximum peak currents 5.10 - Cycle life and capacitance retention rate 5.11 - Inconsistencies in evaluation of SCs 5.11.1 - Causes for the inconsistencies 5.11.2 - Device performance versus material property 5.11.3 - Rate dependence 5.12 - Other test procedures 5.13 - Summary References Chapter 6 - Supercapacitors: prospects and future direction Outline 6.1 - Prospects and possible future research directions References Index Back Cover