دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Alexandru Grumezescu, Alina Maria Holban سری: ISBN (شابک) : 012816901X, 9780128169018 ناشر: Elsevier سال نشر: 2019 تعداد صفحات: 545 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد برای مهندسی پزشکی: هیدروژل ها و داربست های مبتنی بر پلیمر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد برای مهندسی زیست پزشکی: هیدروژل ها و داربست های مبتنی بر پلیمردر مورد استفاده از طیف گسترده ای از هیدروژل ها به عنوان داربست های فعال زیستی در پزشکی احیا کننده بحث می کند، از جمله به روز رسانی در مورد مواد نوآورانه و خواص آنها. انواع مختلفی از مواد داربست و هیدروژلها که در حال حاضر مورد بررسی قرار گرفتهاند، نقشها و کاربردهای آتی آنها، تکنیکهای اصلی ساخت داربست و روشهای مشخصهیابی آنها مورد بحث قرار میگیرند. خوانندگان می توانند از این کتاب به عنوان راهنمای انتخاب بهترین مواد برای یک کاربرد خاص استفاده کنند.
Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds discusses the use of a wide variety of hydrogels as bioactive scaffolds in regenerative medicine, including updates on innovative materials and their properties. Various types of currently investigated scaffolding materials and hydrogels are discussed, as is their future roles and applications, the main techniques for scaffold fabrication, and their characterization procedures. Readers will be able to use this book as a guide for the selection of the best materials for a specific application.
Cover Hydrogels and Polymer-based Scaffolds Copyright List of Contributors Series Preface Preface 1 Interactions between tissues, cells, and biomaterials: an advanced evaluation by synchrotron radiation-based high-resolut... 1.1 Conduction, Induction, and Cell Transplantation in Tissue Engineering: The Limitations of Cross-talk Studies by Convent... 1.2 X-Ray Computed Microtomography: A Challenging Diagnostic Tool 1.3 Innovative Approaches to High-Resolution Tomography by Synchrotron Radiation 1.4 Skeletal Tissue Engineering 1.4.1 Bone 1.4.2 Cartilage 1.4.3 Tendons 1.5 Muscle Tissue Engineering 1.5.1 Skeletal Muscles 1.5.2 Heart 1.6 New Frontiers 1.6.1 Central and Peripheral Nervous System 1.6.2 Vascularization 1.7 Conclusions References Further Reading 2 Bioprinted scaffolds 2.1 Introduction 2.1.1 Prebioprinting 2.1.2 Bioprinting 2.1.3 Postbioprinting 2.1.4 Geometry of Scaffolds 2.1.5 Surface Properties 2.1.6 Pore Size 2.1.7 Adherence and Biocompatibility 2.1.8 Degradation Rates 2.2 Mechanical Properties 2.2.1 Hydrogel-Derived Scaffolds 2.2.2 Agarose hydrogel 2.2.3 Alginate hydrogel 2.2.4 Chitosan hydrogel 2.2.5 Cellulose hydrogel 2.2.6 Fibrin hydrogel 2.2.7 Gelatin/collagen hydrogel 2.2.8 Hyaluronic acid hydrogel 2.2.9 Matrigel hydrogel 2.2.10 Synthetic Hydrogels 2.3 Fibrous Polymer-Derived Scaffolds 2.4 Porous Polymer-Derived Scaffolds 2.5 Conclusion and Perspectives Acknowledgment References 3 Fundamentals of chitosan-based hydrogels: elaboration and characterization techniques 3.1 Introduction 3.2 Chitosan Nature and Main Properties 3.3 Fundamentals of Chitosan Hydrogels 3.3.1 Physical Hydrogels 3.3.2 Chemical Hydrogels 3.4 Characterization Techniques 3.4.1 Structural Analysis 3.4.1.1 Microstructural and spectroscopic analysis 3.4.1.2 Ultraviolet–visible spectroscopy and Fourier-transform infrared spectroscopy 3.4.2 Property Measurements 3.4.2.1 Active compound release assessment 3.4.2.2 Mechanical resistance 3.4.2.3 Viscosity (sol–gel analysis) 3.4.2.4 Swelling index 3.4.2.5 Contact angle 3.4.2.6 Thermal analysis 3.4.3 Specific Properties for Biomedical Engineering Applications 3.4.3.1 Degradability 3.4.3.2 Cytotoxicity 3.5 Potential Applications and Future Trends of Chitosan Hydrogels References 4 Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers 4.1 Tissue Engineering 4.2 Scaffolds 4.3 Biomaterials 4.3.1 Polymeric Biomaterials 4.3.2 Bioreabsorbable Biopolymers 4.4 Poly(α-Hydroxy Acids) 4.5 Poly(α-Hydroxy Acids) Synthesis 4.6 Copolymerization of Poly(α-Hydroxy Acids) 4.7 Mechanisms of Degradation of Poly(α-Hydroxy Acids) 4.8 Biocompatibility 4.9 Toxicity of Poly(α-Hydroxy Acids) 4.9.1 In Vitro Cytotoxicity Tests 4.9.2 In Vitro Hemocompatibility Test 4.9.3 In Vivo Biocompatibility Tests 4.9.3.1 General tests for bone implants 4.9.3.2 General tests for stents 4.10 Applications of Poly(α-Hydroxy Acids)—PLA and PGA 4.10.1 Nonmedical Applications of Poly(α-Hydroxy Acids)—PLA and PGA 4.10.2 Medical Applications of Poly(α-Hydroxy Acids)—PLA and PGA 4.11 Future Trends in Biofabrication 4.11.1 Electrospinning 4.11.2 3D Bioprinting Rapid Prototyping 4.11.3 Bioresponsive Hydrogels 4.11.4 Biopolymer Composites in Tissue Engineering 4.12 Conclusions References Further Reading 5 Technological challenges and advances: from lactic acid to polylactate and copolymers 5.1 Lactic Acid 5.1.1 Factors That Influence Lactic Acid Production 5.1.2 Culture Medium for Lactic Fermentation: Alternative Sources of Carbon and Nitrogen 5.1.3 Production of Lactic Acid by Fermentation 5.1.4 Microorganisms Involved in the Production of Lactic Acid 5.1.5 Extraction and Purification of Lactic Acid 5.2 Poly(lactic Acid) 5.2.1 PLA Chemical and Physical Properties 5.2.2 PLA Synthesis 5.2.2.1 Chemical polymerization 5.2.2.2 Enzymatic polymerization: production of PLA directly by genetically modified microorganism 5.2.3 Kinds of Polymers, Copolymers, and Their Features 5.2.4 PLA Applications 5.2.5 PLA Market Development 5.2.6 PLA Biodegradation, Biocompatibility, and Toxicity 5.3 Conclusion References 6 PLGA scaffolds: building blocks for new age therapeutics 6.1 Challenges in New Age Therapeutic Strategies 6.2 Poly(Lactide-co-Glycolide): General Introduction 6.3 Poly(Lactide-co-Glycolide) Synthesis 6.4 Poly(Lactide-co-Glycolide) Properties 6.5 Poly(Lactide-co-Glycolide) Scaffolds for Bone Tissue Engineering 6.5.1 Porous Scaffolds 6.5.2 Fibrous Scaffolds 6.5.3 Hydrogels 6.5.4 Injectable Microparticles 6.6 Poly(Lactide-co-Glycolide) Scaffolds in Anticancer Therapy 6.7 Poly(Lactide-co-Glycolide) Interventions in Central Nervous System Delivery 6.8 Poly(Lactide-co-Glycolide) Strategies for Gene Therapy and Vaccine Delivery 6.9 Miscellaneous Poly(Lactide-co-Glycolide) Therapeutics 6.10 Conclusions and Future Trends Acknowledgments List of Symbols and Abbreviations References 7 Electrospun biomimetic scaffolds of biosynthesized poly(β-hydroxybutyrate) from Azotobacter vinelandii strains. cell viab... 7.1 Introduction 7.1.1 Polymers as Medical Devices 7.1.2 Shape Memory Polymers 7.1.3 Smart Polymeric Coatings 7.1.4 Electrospun Fibrous Scaffolds 7.1.5 Poly-β-Hydroxybutyrate 7.2 Methods of Characterization 7.2.1 Materials 7.2.2 Scaffold Fabrication 7.2.3 Fourier-Transformed Infrared Spectroscopy 7.2.4 Thermal Analysis 7.2.5 X-Ray Scattering 7.2.6 Small-Angle Light Scattering 7.2.7 Contact Angle 7.2.8 Polarized Optical Microscopy 7.2.9 Scanning Electron Microscopy 7.3 PHB Electrospun Fibrous Scaffolds 7.3.1 Scaffolds Morphology 7.3.2 Wetting Behavior 7.3.3 Aging 7.3.4 Sterilization Methods and Influence on Physical Properties 7.4 Cell Viability and Bone Tissue Regeneration 7.4.1 Cell Viability and HEK293 Cells 7.4.2 Bone Tissue Regeneration and Human Osteoblast Cells 7.5 Concluding Remarks Glossary of Terms References Further Reading 8 Polyurethane-based structures obtained by additive manufacturing technologies 8.1 Introduction 8.2 Bioresorbable Polyurethanes in Biomedical Devices 8.3 Additive Manufacturing for Biomedical Polyurethane Processing 8.3.1 Inkjet Printing 8.3.2 Extrusion-Based Methods 8.3.3 Particle Binding 8.4 Additive Manufacturing of Composite Polyurethanes 8.4.1 Inkjet Printing 8.4.2 Extrusion-Based Methods 8.4.2.1 Direct ink writing 8.4.2.1.1 Liquid-frozen deposition manufacturing 8.4.2.1.2 Double-nozzle low-temperature deposition manufacturing 8.4.2.1.3 Integrated organ printing 8.4.2.2 Fused deposition modeling 8.4.3 Particle Binding 8.5 Remarks and Perspectives Acknowledgment References 9 Composites based on bioderived polymers: potential role in tissue engineering: Vol VI: resorbable polymer fibers 9.1 Introduction 9.2 Polyesters 9.2.1 Poly(Lactic Acid) 9.2.1.1 Poly(lactic acid) fabrication 9.2.1.2 Poly(lactic acid) processing Drying and extrusion Injection molding Stretch blow molding Cast film and sheet Thermoforming Foaming 9.2.1.3 Poly(lactic acid) properties Physical proprties Thermal properties Mechanical properties 9.2.1.4 Poly(lactic acid) medical applications Wound healing and stents Scaffolds for tissue engineering Orthopedic implants and fixation devices Drug delivery 3D printing 9.2.2 Poly(lactic-co-glycolic acid) (PLGA) copolymers 9.2.2.1 Synthesis of PLGA 9.2.2.2 Properties of PLGA 9.2.2.3 Medical Applications of PLGA 9.3 Collagen 9.3.1 Collagen Bioactive Ceramic Composites 9.3.1.1 Collagen–HAP composites 9.3.1.2 Collagen TCP/BCP composites 9.3.1.3 Collagen-bioglass based composites 9.3.2 Medical Applications of Collagen 9.4 Silk Fibroin 9.4.1 Structure of Silk Fibroin 9.4.2 Processing of Silk Fibroin 9.4.2.1 Hydrogelation 9.4.2.2 Electrospinning 9.4.2.3 Porogen leaching 9.4.2.4 3D bioprinting 9.4.2.5 SF composites 9.4.3 Medical Applications of Silk Fibroin 9.4.3.1 SF scaffolds for tissue engineering 9.4.3.2 Delivery of bioactive molecules 9.4.3.3 Fixation devices 9.5 Biocellulose 9.5.1 Biocellulose Fibril Structure 9.5.2 Properties of Biocellulose 9.5.2.1 Mechanical properties 9.5.2.2 Biocompatibility 9.5.2.3 Hemocompatibility 9.5.2.4 Biodegradability 9.5.2.5 Nontoxicity 9.5.3 Biomedical Applications of Biocellulose 9.5.3.1 Substitute biomaterials for medical applications 9.5.3.2 Biocellulose-based scaffolds for bone tissue regeneration 9.5.3.3 Scaffolds for cell culture 9.5.3.4 Antimicrobial biomaterials 9.5.3.5 Drug delivery applications 9.5.3.6 Other biomedical applications 9.6 Conclusions References 10 Composite scaffolds for bone and osteochondral defects 10.1 Introduction 10.2 Biodegradable Matrices 10.3 Bioresorbable Matrices 10.4 Applications in Tissue Engineering 10.4.1 Composite Scaffolds for Bone 10.4.1.1 Calcium phosphate particle loaded porous/nonporous composites 10.4.1.2 Fiber-loaded composites 10.4.1.3 Collagen-HA hybrid nanocomposite for bone 10.4.2 Composite Scaffolds for Osteochondral Defects 10.4.2.1 Multilayer porous scaffolds 10.4.2.2 Gradient porous/nonporous composites 10.4.2.3 Magnetic bioinspired hybrid nanocomposites for osteochondral tissue 10.5 Conclusions References Further Reading 11 Plasma treated and untreated thermoplastic biopolymers/biocomposites in tissue engineering and biodegradable implants 11.1 Introduction 11.2 Structure of PLA and PHAs 11.3 Synthesis of PLA and PHAs 11.4 Properties of PLA and PHAs 11.4.1 Mechanical Properties 11.4.2 Thermal Properties 11.4.3 Transparency 11.4.4 Biocompatibility 11.4.5 Processability 11.5 Application of PLA and PHAs in Tissue Engineering 11.6 Biodegradability of PLA and PHAs 11.7 Plasma Treatment of PLA and PHAs 11.7.1 Plasma and Plasma–Surface Interactions 11.7.2 Characterization Techniques for Plasma Treated Polymer Surfaces 11.7.3 Plasma Treatment of PLA 11.7.4 Plasma Treatment of PHAs 11.7.5 Disadvantages of Plasma Treatment 11.8 Conclusions References 12 The design of two different structural scaffolds using β-tricalcium phosphate (β-TCP) and collagen for bone tissue engin... 12.1 Introduction 12.2 Collagen-Based Porous Scaffold 12.2.1 Fabrication and Characterization of Particle Distributed Scaffold 12.2.1.1 Fabrication of particle distributed scaffold 12.2.1.2 Characterization of particle distributed scaffold 12.2.2 In Vitro Cell Experiment 12.2.2.1 Cell culture 12.2.2.2 Compression test 12.2.2.3 Microstructural characterization 12.2.2.4 Evaluation of cell number and alkaline phosphatase activity 12.2.2.5 Gene expression analysis 12.2.2.6 Statistics 12.3 Experimental Results 12.3.1 Characterization of Particle Distributed Scaffold 12.3.2 Results of In Vitro Cell Experiment 12.4 Mechanism of Variational Mechanical Behavior Between Scaffold Structure and Cell Response 12.5 β-TCP-Based Porous Scaffold 12.5.1 Fabrication and Characterization of Two Phase Structural Scaffold 12.5.1.1 Fabrication of two phase structural scaffold 12.5.1.2 Characterization of two phase structural scaffold 12.6 In Vitro Cell Experiment 12.6.1 Cell Culture 12.6.2 Evaluation of Mechanical Characteristics 12.6.3 Microstructural Characterization 12.6.4 Evaluation of Cell Number and Alkaline Phosphatase Activity 12.6.5 Gene Expression Analysis 12.6.6 Alizarin Red S Staining 12.6.7 Statistics 12.7 Experimental Results 12.7.1 Characterization of Two Phase Structural Scaffold 12.7.2 Results of In Vitro Cell Experiment 12.8 Mechanism of Variational Mechanical Behavior Between Scaffold Structure and Cell Response 12.9 Summary 12.10 Present Study 12.11 Future Work Acknowledgment References 13 Composite materials based on hydroxyapatite embedded in biopolymer matrices: ways of synthesis and application 13.1 Types of Biopolymer Matrices (Collagen, Gelatin, Chitosan, Alginate, and Their Combinations) 13.2 Calcium Phosphates as an Essential Part of Composite Materials 13.3 Formation of Composite Materials 13.4 Biomedical Applications of Obtained Composite Materials References Further Reading 14 Study of microstructural, structural, mechanical, and vibrational properties of defatted trabecular bovine bones: natura... 14.1 Introduction 14.2 Bone Composition 14.2.1 Cortical Bone 14.2.2 Trabecular Bone 14.2.3 Bone Porosity 14.2.4 Hydroxyapatite 14.2.5 Biohydroxyapatite 14.2.5.1 Structural properties of BIO-HA 14.2.5.2 Mineral composition of BIO-HA 14.2.5.3 Thermal properties of BIO-HA 14.2.5.4 Methods to obtain HA and BIO-HA 14.2.6 Collagen 14.2.7 Osteocalcin 14.2.8 Water 14.2.9 Fat 14.3 Study of Spongy Bone 14.3.1 Collection and Preparation of Samples 14.3.2 Morphological Characterization 14.3.3 X-ray Tomography 14.3.3.1 Imaging 14.3.4 Structural Properties 14.3.4.1 Transmission electron microscopy 14.3.4.2 X-ray diffraction 14.3.5 Vibrational Characterization: Raman Spectroscopy 14.3.6 Mechanical Properties 14.4 Synthetic Scaffolds Versus Trabecular Bone 14.5 Conclusions and Perspective Acknowledgments References Further Reading Appendix A 15 Laser processing of biopolymers for development of medical and high-tech devices 15.1 Introduction 15.2 Structure and Raman Spectrum of Polydimethylsiloxane 15.3 Experimental and Analytical Techniques 15.4 Optical Properties of Polydimethylsiloxane during ns-laser treatment 15.5 Fs-Laser Nanostructuring 15.6 Ps-Laser Processing 15.7 Comparison Between Fs- and Ns-Laser Processing 15.8 XPS Study of Ns-Laser Processing of Polydimethylsiloxane 15.9 Electroless Metallization Directly After the Laser Treatment 15.10 Ns-Laser Processing in Different Environments 15.11 Conclusion and Perspectives for Future Investigations Acknowledgments References Further Reading Index Back Cover