ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds

دانلود کتاب مواد برای مهندسی پزشکی: هیدروژل ها و داربست های مبتنی بر پلیمر

Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds

مشخصات کتاب

Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 012816901X, 9780128169018 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 545 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 21


در صورت تبدیل فایل کتاب Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد برای مهندسی پزشکی: هیدروژل ها و داربست های مبتنی بر پلیمر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد برای مهندسی پزشکی: هیدروژل ها و داربست های مبتنی بر پلیمر

مواد برای مهندسی زیست پزشکی: هیدروژل ها و داربست های مبتنی بر پلیمردر مورد استفاده از طیف گسترده ای از هیدروژل ها به عنوان داربست های فعال زیستی در پزشکی احیا کننده بحث می کند، از جمله به روز رسانی در مورد مواد نوآورانه و خواص آنها. انواع مختلفی از مواد داربست و هیدروژل‌ها که در حال حاضر مورد بررسی قرار گرفته‌اند، نقش‌ها و کاربردهای آتی آن‌ها، تکنیک‌های اصلی ساخت داربست و روش‌های مشخصه‌یابی آنها مورد بحث قرار می‌گیرند. خوانندگان می توانند از این کتاب به عنوان راهنمای انتخاب بهترین مواد برای یک کاربرد خاص استفاده کنند.


توضیحاتی درمورد کتاب به خارجی

Materials for Biomedical Engineering: Hydrogels and Polymer-Based Scaffolds discusses the use of a wide variety of hydrogels as bioactive scaffolds in regenerative medicine, including updates on innovative materials and their properties. Various types of currently investigated scaffolding materials and hydrogels are discussed, as is their future roles and applications, the main techniques for scaffold fabrication, and their characterization procedures. Readers will be able to use this book as a guide for the selection of the best materials for a specific application.



فهرست مطالب

Cover
Hydrogels and Polymer-based Scaffolds
Copyright
List of Contributors
Series Preface
Preface
1 Interactions between tissues, cells, and biomaterials: an advanced evaluation by synchrotron radiation-based high-resolut...
	1.1 Conduction, Induction, and Cell Transplantation in Tissue Engineering: The Limitations of Cross-talk Studies by Convent...
	1.2 X-Ray Computed Microtomography: A Challenging Diagnostic Tool
	1.3 Innovative Approaches to High-Resolution Tomography by Synchrotron Radiation
	1.4 Skeletal Tissue Engineering
		1.4.1 Bone
		1.4.2 Cartilage
		1.4.3 Tendons
	1.5 Muscle Tissue Engineering
		1.5.1 Skeletal Muscles
		1.5.2 Heart
	1.6 New Frontiers
		1.6.1 Central and Peripheral Nervous System
		1.6.2 Vascularization
	1.7 Conclusions
	References
	Further Reading
2 Bioprinted scaffolds
	2.1 Introduction
		2.1.1 Prebioprinting
		2.1.2 Bioprinting
		2.1.3 Postbioprinting
		2.1.4 Geometry of Scaffolds
		2.1.5 Surface Properties
		2.1.6 Pore Size
		2.1.7 Adherence and Biocompatibility
		2.1.8 Degradation Rates
	2.2 Mechanical Properties
		2.2.1 Hydrogel-Derived Scaffolds
		2.2.2 Agarose hydrogel
		2.2.3 Alginate hydrogel
		2.2.4 Chitosan hydrogel
		2.2.5 Cellulose hydrogel
		2.2.6 Fibrin hydrogel
		2.2.7 Gelatin/collagen hydrogel
		2.2.8 Hyaluronic acid hydrogel
		2.2.9 Matrigel hydrogel
		2.2.10 Synthetic Hydrogels
	2.3 Fibrous Polymer-Derived Scaffolds
	2.4 Porous Polymer-Derived Scaffolds
	2.5 Conclusion and Perspectives
	Acknowledgment
	References
3 Fundamentals of chitosan-based hydrogels: elaboration and characterization techniques
	3.1 Introduction
	3.2 Chitosan Nature and Main Properties
	3.3 Fundamentals of Chitosan Hydrogels
		3.3.1 Physical Hydrogels
		3.3.2 Chemical Hydrogels
	3.4 Characterization Techniques
		3.4.1 Structural Analysis
			3.4.1.1 Microstructural and spectroscopic analysis
			3.4.1.2 Ultraviolet–visible spectroscopy and Fourier-transform infrared spectroscopy
		3.4.2 Property Measurements
			3.4.2.1 Active compound release assessment
			3.4.2.2 Mechanical resistance
			3.4.2.3 Viscosity (sol–gel analysis)
			3.4.2.4 Swelling index
			3.4.2.5 Contact angle
			3.4.2.6 Thermal analysis
		3.4.3 Specific Properties for Biomedical Engineering Applications
			3.4.3.1 Degradability
			3.4.3.2 Cytotoxicity
	3.5 Potential Applications and Future Trends of Chitosan Hydrogels
	References
4 Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers
	4.1 Tissue Engineering
	4.2 Scaffolds
	4.3 Biomaterials
		4.3.1 Polymeric Biomaterials
		4.3.2 Bioreabsorbable Biopolymers
	4.4 Poly(α-Hydroxy Acids)
	4.5 Poly(α-Hydroxy Acids) Synthesis
	4.6 Copolymerization of Poly(α-Hydroxy Acids)
	4.7 Mechanisms of Degradation of Poly(α-Hydroxy Acids)
	4.8 Biocompatibility
	4.9 Toxicity of Poly(α-Hydroxy Acids)
		4.9.1 In Vitro Cytotoxicity Tests
		4.9.2 In Vitro Hemocompatibility Test
		4.9.3 In Vivo Biocompatibility Tests
			4.9.3.1 General tests for bone implants
			4.9.3.2 General tests for stents
	4.10 Applications of Poly(α-Hydroxy Acids)—PLA and PGA
		4.10.1 Nonmedical Applications of Poly(α-Hydroxy Acids)—PLA and PGA
		4.10.2 Medical Applications of Poly(α-Hydroxy Acids)—PLA and PGA
	4.11 Future Trends in Biofabrication
		4.11.1 Electrospinning
		4.11.2 3D Bioprinting Rapid Prototyping
		4.11.3 Bioresponsive Hydrogels
		4.11.4 Biopolymer Composites in Tissue Engineering
	4.12 Conclusions
	References
	Further Reading
5 Technological challenges and advances: from lactic acid to polylactate and copolymers
	5.1 Lactic Acid
		5.1.1 Factors That Influence Lactic Acid Production
		5.1.2 Culture Medium for Lactic Fermentation: Alternative Sources of Carbon and Nitrogen
		5.1.3 Production of Lactic Acid by Fermentation
		5.1.4 Microorganisms Involved in the Production of Lactic Acid
		5.1.5 Extraction and Purification of Lactic Acid
	5.2 Poly(lactic Acid)
		5.2.1 PLA Chemical and Physical Properties
		5.2.2 PLA Synthesis
			5.2.2.1 Chemical polymerization
			5.2.2.2 Enzymatic polymerization: production of PLA directly by genetically modified microorganism
		5.2.3 Kinds of Polymers, Copolymers, and Their Features
		5.2.4 PLA Applications
		5.2.5 PLA Market Development
		5.2.6 PLA Biodegradation, Biocompatibility, and Toxicity
	5.3 Conclusion
	References
6 PLGA scaffolds: building blocks for new age therapeutics
	6.1 Challenges in New Age Therapeutic Strategies
	6.2 Poly(Lactide-co-Glycolide): General Introduction
	6.3 Poly(Lactide-co-Glycolide) Synthesis
	6.4 Poly(Lactide-co-Glycolide) Properties
	6.5 Poly(Lactide-co-Glycolide) Scaffolds for Bone Tissue Engineering
		6.5.1 Porous Scaffolds
		6.5.2 Fibrous Scaffolds
		6.5.3 Hydrogels
		6.5.4 Injectable Microparticles
	6.6 Poly(Lactide-co-Glycolide) Scaffolds in Anticancer Therapy
	6.7 Poly(Lactide-co-Glycolide) Interventions in Central Nervous System Delivery
	6.8 Poly(Lactide-co-Glycolide) Strategies for Gene Therapy and Vaccine Delivery
	6.9 Miscellaneous Poly(Lactide-co-Glycolide) Therapeutics
	6.10 Conclusions and Future Trends
	Acknowledgments
	List of Symbols and Abbreviations
	References
7 Electrospun biomimetic scaffolds of biosynthesized poly(β-hydroxybutyrate) from Azotobacter vinelandii strains. cell viab...
	7.1 Introduction
		7.1.1 Polymers as Medical Devices
		7.1.2 Shape Memory Polymers
		7.1.3 Smart Polymeric Coatings
		7.1.4 Electrospun Fibrous Scaffolds
		7.1.5 Poly-β-Hydroxybutyrate
	7.2 Methods of Characterization
		7.2.1 Materials
		7.2.2 Scaffold Fabrication
		7.2.3 Fourier-Transformed Infrared Spectroscopy
		7.2.4 Thermal Analysis
		7.2.5 X-Ray Scattering
		7.2.6 Small-Angle Light Scattering
		7.2.7 Contact Angle
		7.2.8 Polarized Optical Microscopy
		7.2.9 Scanning Electron Microscopy
	7.3 PHB Electrospun Fibrous Scaffolds
		7.3.1 Scaffolds Morphology
		7.3.2 Wetting Behavior
		7.3.3 Aging
		7.3.4 Sterilization Methods and Influence on Physical Properties
	7.4 Cell Viability and Bone Tissue Regeneration
		7.4.1 Cell Viability and HEK293 Cells
		7.4.2 Bone Tissue Regeneration and Human Osteoblast Cells
	7.5 Concluding Remarks
	Glossary of Terms
	References
	Further Reading
8 Polyurethane-based structures obtained by additive manufacturing technologies
	8.1 Introduction
	8.2 Bioresorbable Polyurethanes in Biomedical Devices
	8.3 Additive Manufacturing for Biomedical Polyurethane Processing
		8.3.1 Inkjet Printing
		8.3.2 Extrusion-Based Methods
		8.3.3 Particle Binding
	8.4 Additive Manufacturing of Composite Polyurethanes
		8.4.1 Inkjet Printing
		8.4.2 Extrusion-Based Methods
			8.4.2.1 Direct ink writing
				8.4.2.1.1 Liquid-frozen deposition manufacturing
				8.4.2.1.2 Double-nozzle low-temperature deposition manufacturing
				8.4.2.1.3 Integrated organ printing
			8.4.2.2 Fused deposition modeling
		8.4.3 Particle Binding
	8.5 Remarks and Perspectives
	Acknowledgment
	References
9 Composites based on bioderived polymers: potential role in tissue engineering: Vol VI: resorbable polymer fibers
	9.1 Introduction
	9.2 Polyesters
		9.2.1 Poly(Lactic Acid)
			9.2.1.1 Poly(lactic acid) fabrication
			9.2.1.2 Poly(lactic acid) processing
				Drying and extrusion
				Injection molding
				Stretch blow molding
				Cast film and sheet
				Thermoforming
				Foaming
			9.2.1.3 Poly(lactic acid) properties
				Physical proprties
				Thermal properties
				Mechanical properties
			9.2.1.4 Poly(lactic acid) medical applications
				Wound healing and stents
				Scaffolds for tissue engineering
				Orthopedic implants and fixation devices
				Drug delivery
				3D printing
		9.2.2 Poly(lactic-co-glycolic acid) (PLGA) copolymers
			9.2.2.1 Synthesis of PLGA
			9.2.2.2 Properties of PLGA
			9.2.2.3 Medical Applications of PLGA
	9.3 Collagen
		9.3.1 Collagen Bioactive Ceramic Composites
			9.3.1.1 Collagen–HAP composites
			9.3.1.2 Collagen TCP/BCP composites
			9.3.1.3 Collagen-bioglass based composites
		9.3.2 Medical Applications of Collagen
	9.4 Silk Fibroin
		9.4.1 Structure of Silk Fibroin
		9.4.2 Processing of Silk Fibroin
			9.4.2.1 Hydrogelation
			9.4.2.2 Electrospinning
			9.4.2.3 Porogen leaching
			9.4.2.4 3D bioprinting
			9.4.2.5 SF composites
		9.4.3 Medical Applications of Silk Fibroin
			9.4.3.1 SF scaffolds for tissue engineering
			9.4.3.2 Delivery of bioactive molecules
			9.4.3.3 Fixation devices
	9.5 Biocellulose
		9.5.1 Biocellulose Fibril Structure
		9.5.2 Properties of Biocellulose
			9.5.2.1 Mechanical properties
			9.5.2.2 Biocompatibility
			9.5.2.3 Hemocompatibility
			9.5.2.4 Biodegradability
			9.5.2.5 Nontoxicity
		9.5.3 Biomedical Applications of Biocellulose
			9.5.3.1 Substitute biomaterials for medical applications
			9.5.3.2 Biocellulose-based scaffolds for bone tissue regeneration
			9.5.3.3 Scaffolds for cell culture
			9.5.3.4 Antimicrobial biomaterials
			9.5.3.5 Drug delivery applications
			9.5.3.6 Other biomedical applications
	9.6 Conclusions
	References
10 Composite scaffolds for bone and osteochondral defects
	10.1 Introduction
	10.2 Biodegradable Matrices
	10.3 Bioresorbable Matrices
	10.4 Applications in Tissue Engineering
		10.4.1 Composite Scaffolds for Bone
			10.4.1.1 Calcium phosphate particle loaded porous/nonporous composites
			10.4.1.2 Fiber-loaded composites
			10.4.1.3 Collagen-HA hybrid nanocomposite for bone
		10.4.2 Composite Scaffolds for Osteochondral Defects
			10.4.2.1 Multilayer porous scaffolds
			10.4.2.2 Gradient porous/nonporous composites
			10.4.2.3 Magnetic bioinspired hybrid nanocomposites for osteochondral tissue
	10.5 Conclusions
	References
	Further Reading
11 Plasma treated and untreated thermoplastic biopolymers/biocomposites in tissue engineering and biodegradable implants
	11.1 Introduction
	11.2 Structure of PLA and PHAs
	11.3 Synthesis of PLA and PHAs
	11.4 Properties of PLA and PHAs
		11.4.1 Mechanical Properties
		11.4.2 Thermal Properties
		11.4.3 Transparency
		11.4.4 Biocompatibility
		11.4.5 Processability
	11.5 Application of PLA and PHAs in Tissue Engineering
	11.6 Biodegradability of PLA and PHAs
	11.7 Plasma Treatment of PLA and PHAs
		11.7.1 Plasma and Plasma–Surface Interactions
		11.7.2 Characterization Techniques for Plasma Treated Polymer Surfaces
		11.7.3 Plasma Treatment of PLA
		11.7.4 Plasma Treatment of PHAs
		11.7.5 Disadvantages of Plasma Treatment
	11.8 Conclusions
	References
12 The design of two different structural scaffolds using β-tricalcium phosphate (β-TCP) and collagen for bone tissue engin...
	12.1 Introduction
	12.2 Collagen-Based Porous Scaffold
		12.2.1 Fabrication and Characterization of Particle Distributed Scaffold
			12.2.1.1 Fabrication of particle distributed scaffold
			12.2.1.2 Characterization of particle distributed scaffold
		12.2.2 In Vitro Cell Experiment
			12.2.2.1 Cell culture
			12.2.2.2 Compression test
			12.2.2.3 Microstructural characterization
			12.2.2.4 Evaluation of cell number and alkaline phosphatase activity
			12.2.2.5 Gene expression analysis
			12.2.2.6 Statistics
	12.3 Experimental Results
		12.3.1 Characterization of Particle Distributed Scaffold
		12.3.2 Results of In Vitro Cell Experiment
	12.4 Mechanism of Variational Mechanical Behavior Between Scaffold Structure and Cell Response
	12.5 β-TCP-Based Porous Scaffold
		12.5.1 Fabrication and Characterization of Two Phase Structural Scaffold
			12.5.1.1 Fabrication of two phase structural scaffold
			12.5.1.2 Characterization of two phase structural scaffold
	12.6 In Vitro Cell Experiment
		12.6.1 Cell Culture
		12.6.2 Evaluation of Mechanical Characteristics
		12.6.3 Microstructural Characterization
		12.6.4 Evaluation of Cell Number and Alkaline Phosphatase Activity
		12.6.5 Gene Expression Analysis
		12.6.6 Alizarin Red S Staining
		12.6.7 Statistics
	12.7 Experimental Results
		12.7.1 Characterization of Two Phase Structural Scaffold
		12.7.2 Results of In Vitro Cell Experiment
	12.8 Mechanism of Variational Mechanical Behavior Between Scaffold Structure and Cell Response
	12.9 Summary
	12.10 Present Study
	12.11 Future Work
	Acknowledgment
	References
13 Composite materials based on hydroxyapatite embedded in biopolymer matrices: ways of synthesis and application
	13.1 Types of Biopolymer Matrices (Collagen, Gelatin, Chitosan, Alginate, and Their Combinations)
	13.2 Calcium Phosphates as an Essential Part of Composite Materials
	13.3 Formation of Composite Materials
	13.4 Biomedical Applications of Obtained Composite Materials
	References
	Further Reading
14 Study of microstructural, structural, mechanical, and vibrational properties of defatted trabecular bovine bones: natura...
	14.1 Introduction
	14.2 Bone Composition
		14.2.1 Cortical Bone
		14.2.2 Trabecular Bone
		14.2.3 Bone Porosity
		14.2.4 Hydroxyapatite
		14.2.5 Biohydroxyapatite
			14.2.5.1 Structural properties of BIO-HA
			14.2.5.2 Mineral composition of BIO-HA
			14.2.5.3 Thermal properties of BIO-HA
			14.2.5.4 Methods to obtain HA and BIO-HA
		14.2.6 Collagen
		14.2.7 Osteocalcin
		14.2.8 Water
		14.2.9 Fat
	14.3 Study of Spongy Bone
		14.3.1 Collection and Preparation of Samples
		14.3.2 Morphological Characterization
		14.3.3 X-ray Tomography
			14.3.3.1 Imaging
		14.3.4 Structural Properties
			14.3.4.1 Transmission electron microscopy
			14.3.4.2 X-ray diffraction
		14.3.5 Vibrational Characterization: Raman Spectroscopy
		14.3.6 Mechanical Properties
	14.4 Synthetic Scaffolds Versus Trabecular Bone
	14.5 Conclusions and Perspective
	Acknowledgments
	References
	Further Reading
	Appendix A
15 Laser processing of biopolymers for development of medical and high-tech devices
	15.1 Introduction
	15.2 Structure and Raman Spectrum of Polydimethylsiloxane
	15.3 Experimental and Analytical Techniques
	15.4 Optical Properties of Polydimethylsiloxane during ns-laser treatment
	15.5 Fs-Laser Nanostructuring
	15.6 Ps-Laser Processing
	15.7 Comparison Between Fs- and Ns-Laser Processing
	15.8 XPS Study of Ns-Laser Processing of Polydimethylsiloxane
	15.9 Electroless Metallization Directly After the Laser Treatment
	15.10 Ns-Laser Processing in Different Environments
	15.11 Conclusion and Perspectives for Future Investigations
	Acknowledgments
	References
	Further Reading
Index
Back Cover




نظرات کاربران