دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Parashivamurthy K. I.
سری:
ISBN (شابک) : 9788131761625, 9789332509634
ناشر: Pearson Education
سال نشر: 2012
تعداد صفحات: 285
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Material Science and Metallurgy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم مواد و متالورژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Brief Contents Contents Preface Acknowledgements About the Author Chapter 1: Atomic Structure 1.1 Present Theory of Atom 1.2 Quantum States 1.2.1 Quantum Numbers 1.3 Electronic Configuration 1.3.1 Principle of Minimum Energy 1.3.2 Pauli’s Exclusion Principle 1.4 Forces of Attraction 1.4.1 Primary Forces of Attraction (Chemical Bond) 1.5 Secondary Bonds (van der Waals Forces) Exercises Objective-type Questions Chapter 2: Crystal Structure 2.1 Crystal (Space) Lattice and Unit Cell 2.2 Crystal Systems 2.3 Structures of Common Metallic Materials 2.3.1 Body-centred Cubic (BCC) Structure 2.3.2 Face-centred Cubic (FCC) Structure 2.3.3 Hexagonal Closed-Packed (HCP) Structure 2.4 Crystallographic Planes and Directions 2.4.1 Miller Indices for Planes 2.4.2 Miller Indices of Direction 2.5 Miller Bravais Indices 2.6 X-ray Diffractions 2.6.1 Bragg’s Law 2.7 Methods to Determine Crystal Structure 2.7.1 Laue Back Reflection Method 2.7.2 Rotating Crystal Method 2.7.3 Debye–Scherrer or Powder Method Exercises Objective-type Questions Chapter 3: Crystal Imperfections 3.1 Classification of Imperfections (Based on Geometry) 3.1.1 Point Imperfections 3.1.2 Line Imperfections 3.1.3 Surface Imperfections 3.2 Volume Imperfections (Stacking Fault) Exercises Objective-type Questions Chapter 4: Atomic Diffusion 4.1 Diffusion Mechanisms 4.2 Types of Diffusion 4.3 Fick’s Laws of Diffusion 4.3.1 Fick’s First Law of Diffusion—Steady-state Diffusion 4.3.2 Fick’s Second Law—Unsteady-state Diffusion 4.4 Activation Energy for Diffusion (Arrhenius Equation) 4.5 Factors Affecting Diffusion 4.5.1 Temperature 4.5.2 Crystal Structure 4.5.3 Concentration Gradient 4.5.4 Crystal Imperfection 4.5.5 Grain Size 4.6 Applications of Diffusion Exercises Objective-type Questions Chapter 5: Mechanical Behaviour of Metals 5.1 Stress and Strain 5.1.1 Stress 5.1.2 Strain 5.2 True Stress–Strain Curves 5.2.1 True Stress 5.2.2 True Strain 5.3 Deformation of Metals 5.3.1 Types of Metal Deformation Exercises Objective-type Questions Chapter 6: Fracture 6.1 Ductile Fracture 6.2 Brittle Fracture (Cleavage Fracture) 6.3 Theoretical Cohesive Strength of Materials 6.4 Griffith’s Theory of Brittle Fracture Exercises Objective-type Questions Chapter 7: Creep 7.1 Creep Curve 7.1.1 Primary Creep 7.1.2 Secondary or Steady-state Creep 7.1.3 Tertiary or Viscous Creep 7.2 Effect of Temperature on Creep Deformation (Low Temperature and High 7.3 Transient Creep 7.4 Viscous Creep 7.5 Mechanism of Creep 7.5.1 Dislocation Climb 7.5.2 Sliding of Grain Boundary 7.5.3 Diffusion of Vacancy 7.6 Creep Properties 7.7 Creep Fracture 7.8 Elastic After-effect (an Elastic Behaviour or Delayed Elastic) 7.8.1 Stress Relaxation 7.9 Creep Testing 7.10 Factors Affecting Creep Exercises Objective-type Questions Chapter 8: Fatigue 8.1 Types of Fatigue Loading 8.1.1 Completely Reversed Loading 8.1.2 Repeated Loading 8.1.3 Irregular Loading 8.2 Mechanism of Fatigue Failure 8.2.1 Orowan’s Theory 8.2.2 Wood’s Theory 8.2.3 Cottrel and Hull Theory 8.3 Fatigue Properties 8.4 S–N Diagram 8.5 Factors Affecting Fatigue 8.6 Fatigue Test 8.7 Fatigue Fracture Exercises Objective-type Questions Chapter 9: Solidification of Metals and Alloys 9.1 Mechanism of Solidification of Metals 9.2 Nucleation 9.2.1 Homogenous or Self-nucleation 9.2.2 Heterogeneous Nucleation 9.3 Crystal Growth 9.4 Dendrite Growth 9.4.1 Volume Shrinkage 9.5 Effect of Super-cooling or Under-cooling on Critical Radius of a Nucleus 9.6 Casting Metal Structure Exercises Objective-type Questions Chapter 10: Solid Solutions 10.1 Solid Solutions 10.2 Substitutional Solid Solution 10.2.1 Disordered Substitutional Solid Solution 10.2.2 Ordered Substitutional Solid Solution 10.2.3 Hume Rothery’s Rule 10.3 Interstitial Solid Solution 10.3.1 Metallic Compounds (Intermediate Phases) Exercises Objective-type Questions Chapter 11: Phase Diagrams 11.1 Cooling Curves 11.1.1 Cooling Curve for Pure Metals or Solidification of Pure Metals 11.1.2 Cooling Curve for Binary Alloy 11.2 Construction of Phase Diagram 11.3 Interpretation of Phase Diagram 11.3.1 Prediction of Phase 11.3.2 Prediction of Chemical Composition of Different Phases for a Given Temperature 11.3.3 Prediction of Amount of Phase (Lever-arm Rule) 11.4 Gibbs Phase Rule 11.5 Classification of Phase Diagrams 11.5.1 According to Number of Components in the System 11.5.2 According to Solubility of Components 11.6 Liquid and Solid-state Transformation 11.6.1 Eutectic Reaction (Transformation) 11.6.2 Peritectic Reaction 11.6.3 Eutectoid Reaction 11.6.4 Peritectoid Reaction 11.7 Complex Alloy Systems 11.8 Ternary Phase Diagram Exercises Objective-type Questions Chapter 12: Iron Carbon Equilibrium Diagram 12.1 Solidification of Pure Iron (Constitution of Iron or Allotropy Modification of Iron) 12.2 Iron Carbon Phase Diagram 12.3 Phases of Iron Carbide, Phase Diagram 12.3.1 δ-Ferrite 12.3.2 Austenite 12.3.3 Ferrite 12.3.4 Cementite 12.3.5 Pearlite 12.3.6 Ledeburite 12.3.7 Solubility of Carbon in Iron 12.4 Reaction of Iron Carbon System 12.4.1 Peritectic Reaction 12.4.2 Eutectoid Reaction 12.4.3 Eutectic Reaction 12.5 Steels 12.5.1 Solidification and Transformation of Hypoeutectoid Steel (0.4% Carbon Steel) 12.5.2 Solidification and Transformation of Eutectoid Steel (0.8% Carbon Steel) 12.5.3 Solidification and Transformation of Hypereutectoid Steel (1.5% Carbon Steel) 12.6 Cast Iron 12.6.1 Solidification and Transformation of Hypoeutectic Cast Iron (4% Carbon Cast Iron) 12.6.2 Solidification and Transformation of Eutectic Cast Iron (4.33% Carbon Cast Iron) 12.6.3 Solidification and Transformation of Hypereutectic Cast Iron (6.23% Carbon Cast Iron) 12.7 Critical Temperature of the Iron and Iron Carbon Diagram Exercises Objective-type Questions Chapter 13: Isothermal and Continuous Cooling Transformation Diagrams 13.1 Construction of TTT Diagram 13.2 Effect of Cooling Rate on TTT Diagram 13.2.1 Definitions 13.3 Continuous Cooling Transformation (CCT) Curve 13.4 Effect of Carbon Content and Alloying Elements Exercises Objective-type Questions Chapter 14: Heat Treatment 14.1 Heat Treatment Purposes 14.1.1 Temperature up to which the Metal or Alloy is Heated 14.1.2 Length of Time the Metal or Alloy is Held at this Temperature (Holding Time) 14.1.3 Rate of Cooling 14.1.4 Quenching Media 14.2 Heat Treatment of Steel 14.2.1 Treatments that Produce Equilibrium Condition 14.2.2 Treatments that Produce Nonequilibrium Condition 14.3 Martempering (Interrupted Quenching) 14.4 Austempering (Isothermal Transformation) 14.5 Hardenability 14.5.1 Jominy End-Quench Tests 14.6 Surface Hardening 14.6.1 Method in which Whole Component is Heated 14.6.2 Method in which only Surface of Component is Heated 14.7 Heat Treatment of Nonferrous Metals 14.7.1 Precipitation Hardening (Age Hardening) 14.7.2 Annealing Exercises Objective-type Questions Chapter 15: Composite Materials 15.1 Particulate Reinforced Composites 15.2 Fibre Reinforced Composites 15.3 Laminated Composite Material 15.4 Polymer Matrix Composites 15.5 Metal Matrix Composite 15.6 Ceramic Matrix Composites 15.7 Agglomerated Composite Material 15.8 Manufacturing Methods for Composite Materials 15.9 Manufacturing Method for Particulate Reinforced Composites 15.9.1 Liquid-state Methods 15.9.2 Solid-state Methods 15.10 Manufacturing of Fibre-reinforced Polymer Matrix Composites 15.10.1 Open Mould Process 15.10.2 Closed Mould Process 15.11 Manufacture of Laminated Composite 15.11.1 Solid-state Bonding of Composite 15.12 Mechanical Behaviours of a Composite Material 15.12.1 Determination of E1(Longitudinal Direction or Iso-strain Condition) 15.12.2 Determination of Young’s Modulus in the Direction of E2 (Transverse Direction or Iso-stress Condition) 15.12.3 Determination of Poisson’s Ratio V12 15.12.4 Determination of G12 (Shear Modulus) 15.13 Properties of Composite Materials 15.14 Advantages of Composites 15.15 Limitations of Composites 15.16 Applications Exercises Objective-type Questions Chapter 16: Properties of Ferrous and Non-ferrous Materials 16.1 Ferrous metals 16.1.1 Steels 16.1.2 Pig Iron 16.1.3 Wrought Iron 16.1.4 Cast Iron 16.2 Non-ferrous Metals and Alloys 16.2.1 Copper and Copper-based Alloys 16.2.2 Aluminum and Its Alloys Exercises Objective-type Questions Chapter 17: Powder Metallurgy 17.1 Method of Producing Powders 17.1.1 Atomization of Molten Metal 17.1.2 Electrodeposition 17.1.3 Reduction of a Compound 17.1.4 Crushing and Milling 17.2 Blending of Powder 17.3 Compaction (Cold and Hot) 17.4 Pre-sintering and Sintering 17.5 Finishing Operations 17.6 Heat Treatment 17.7 Characteristics of Powder and Its Parts 17.8 Applications of Some Powder Metallurgy Parts 17.9 Advantages of Powder Metallurgy Components 17.10 Disadvantages of Powder Metallurgy Exercises Objective-type Questions Chapter 18: Ceramic Materials 18.1 Classification of Ceramics 18.1.1 Based on Fusing or Melting Temperature 18.1.2 Based on Nature of Reaction 18.1.3 On the Basis of Chemical Composition of the Refractories 18.1.4 Based on the Nature of Materials 18.2 Characteristics of Refractories 18.3 Properties of Ceramic Materials 18.4 Application of Ceramics 18.4.1 Traditional Ceramics 18.4.2 Industrial Ceramics 18.4.3 Automotive Ceramics 18.4.4 Tribological Ceramics 18.4.5 Conductive Ceramics 18.4.6 Nuclear Ceramics 18.4.7 Optical Ceramics 18.4.8 Pigments Exercises Objective-type Questions Chapter 19: Corrosion of Metals and Alloys 19.1 Electrochemical Theory of Corrosion 19.2 Galvanic Cell 19.3 Electrode Potential 19.3.1 Primary Reference Electrode 19.3.2 Secondary Reference Electrode 19.4 Standard Electrode Potential and Electrochemical Series 19.5 Types of Corrosion 19.5.1 Uniform Corrosion 19.5.2 Galvanic Corrosion 19.5.3 Pitting Corrosion 19.5.4 Stress Corrosion 19.6 Prevention and Control of Corrosion 19.6.1 Proper Design and Selection of Metals 19.6.2 Change of Environment 19.6.3 Change of Metal Potential 19.6.4 Protective Coatings 19.6.5 Passivation 19.7 Metallic Coatings 19.7.1 Nickel Plating 19.7.2 Chromium Plating 19.7.3 Silver Plating 19.7.4 Cadmium Plating 19.7.5 Gold Plating 19.8 Organic Protective Coatings 19.9 Disadvantages of Corrosion Exercises Objective-type Questions Index