ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Material Science and Metallurgy

دانلود کتاب علم مواد و متالورژی

Material Science and Metallurgy

مشخصات کتاب

Material Science and Metallurgy

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9788131761625, 9789332509634 
ناشر: Pearson Education 
سال نشر: 2012 
تعداد صفحات: 285 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 مگابایت 

قیمت کتاب (تومان) : 52,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Material Science and Metallurgy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علم مواد و متالورژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Brief Contents
Contents
Preface
Acknowledgements
About the Author
Chapter 1: Atomic Structure
	1.1 Present Theory of Atom
	1.2 Quantum States
		1.2.1 Quantum Numbers
	1.3 Electronic Configuration
		1.3.1 Principle of Minimum Energy
		1.3.2 Pauli’s Exclusion Principle
	1.4 Forces of Attraction
		1.4.1 Primary Forces of Attraction (Chemical Bond)
	1.5 Secondary Bonds (van der Waals Forces)
	Exercises
	Objective-type Questions
Chapter 2: Crystal Structure
	2.1 Crystal (Space) Lattice and Unit Cell
	2.2 Crystal Systems
	2.3 Structures of Common Metallic Materials
		2.3.1 Body-centred Cubic (BCC) Structure
		2.3.2 Face-centred Cubic (FCC) Structure
		2.3.3 Hexagonal Closed-Packed (HCP) Structure
	2.4 Crystallographic Planes and Directions
		2.4.1 Miller Indices for Planes
		2.4.2 Miller Indices of Direction
	2.5 Miller Bravais Indices
	2.6 X-ray Diffractions
		2.6.1 Bragg’s Law
	2.7 Methods to Determine Crystal Structure
		2.7.1 Laue Back Reflection Method
		2.7.2 Rotating Crystal Method
		2.7.3 Debye–Scherrer or Powder Method
	Exercises
	Objective-type Questions
Chapter 3: Crystal Imperfections
	3.1 Classification of Imperfections (Based on Geometry)
		3.1.1 Point Imperfections
		3.1.2 Line Imperfections
		3.1.3 Surface Imperfections
	3.2 Volume Imperfections (Stacking Fault)
	Exercises
	Objective-type Questions
Chapter 4: Atomic Diffusion
	4.1 Diffusion Mechanisms
	4.2 Types of Diffusion
	4.3 Fick’s Laws of Diffusion
		4.3.1 Fick’s First Law of Diffusion—Steady-state Diffusion
		4.3.2 Fick’s Second Law—Unsteady-state Diffusion
	4.4 Activation Energy for Diffusion (Arrhenius Equation)
	4.5 Factors Affecting Diffusion
		4.5.1 Temperature
		4.5.2 Crystal Structure
		4.5.3 Concentration Gradient
		4.5.4 Crystal Imperfection
		4.5.5 Grain Size
	4.6 Applications of Diffusion
	Exercises
	Objective-type Questions
Chapter 5: Mechanical Behaviour of Metals
	5.1 Stress and Strain
		5.1.1 Stress
		5.1.2 Strain
	5.2 True Stress–Strain Curves
		5.2.1 True Stress
		5.2.2 True Strain
	5.3 Deformation of Metals
		5.3.1 Types of Metal Deformation
	Exercises
	Objective-type Questions
Chapter 6: Fracture
	6.1 Ductile Fracture
	6.2 Brittle Fracture (Cleavage Fracture)
	6.3 Theoretical Cohesive Strength of Materials
	6.4 Griffith’s Theory of Brittle Fracture
	Exercises
	Objective-type Questions
Chapter 7: Creep
	7.1 Creep Curve
		7.1.1 Primary Creep
		7.1.2 Secondary or Steady-state Creep
		7.1.3 Tertiary or Viscous Creep
	7.2 Effect of Temperature on Creep Deformation (Low Temperature and High
	7.3 Transient Creep
	7.4 Viscous Creep
	7.5 Mechanism of Creep
		7.5.1 Dislocation Climb
		7.5.2 Sliding of Grain Boundary
		7.5.3 Diffusion of Vacancy
	7.6 Creep Properties
	7.7 Creep Fracture
	7.8 Elastic After-effect (an Elastic Behaviour or Delayed Elastic)
		7.8.1 Stress Relaxation
	7.9 Creep Testing
	7.10 Factors Affecting Creep
	Exercises
	Objective-type Questions
Chapter 8: Fatigue
	8.1 Types of Fatigue Loading
		8.1.1 Completely Reversed Loading
		8.1.2 Repeated Loading
		8.1.3 Irregular Loading
	8.2 Mechanism of Fatigue Failure
		8.2.1 Orowan’s Theory
		8.2.2 Wood’s Theory
		8.2.3 Cottrel and Hull Theory
	8.3 Fatigue Properties
	8.4 S–N Diagram
	8.5 Factors Affecting Fatigue
	8.6 Fatigue Test
	8.7 Fatigue Fracture
	Exercises
	Objective-type Questions
Chapter 9: Solidification of Metals and Alloys
	9.1 Mechanism of Solidification of Metals
	9.2 Nucleation
		9.2.1 Homogenous or Self-nucleation
		9.2.2 Heterogeneous Nucleation
	9.3 Crystal Growth
	9.4 Dendrite Growth
		9.4.1 Volume Shrinkage
	9.5 Effect of Super-cooling or Under-cooling on Critical Radius of a Nucleus
	9.6 Casting Metal Structure
	Exercises
	Objective-type Questions
Chapter 10: Solid Solutions
	10.1 Solid Solutions
	10.2 Substitutional Solid Solution
		10.2.1 Disordered Substitutional Solid Solution
		10.2.2 Ordered Substitutional Solid Solution
		10.2.3 Hume Rothery’s Rule
	10.3 Interstitial Solid Solution
		10.3.1 Metallic Compounds (Intermediate Phases)
	Exercises
	Objective-type Questions
Chapter 11: Phase Diagrams
	11.1 Cooling Curves
		11.1.1 Cooling Curve for Pure Metals or Solidification of Pure Metals
		11.1.2 Cooling Curve for Binary Alloy
	11.2 Construction of Phase Diagram
	11.3 Interpretation of Phase Diagram
		11.3.1 Prediction of Phase
		11.3.2 Prediction of Chemical Composition of Different Phases for a Given Temperature
		11.3.3 Prediction of Amount of Phase (Lever-arm Rule)
	11.4 Gibbs Phase Rule
	11.5 Classification of Phase Diagrams
		11.5.1 According to Number of Components in the System
		11.5.2 According to Solubility of Components
	11.6 Liquid and Solid-state Transformation
		11.6.1 Eutectic Reaction (Transformation)
		11.6.2 Peritectic Reaction
		11.6.3 Eutectoid Reaction
		11.6.4 Peritectoid Reaction
	11.7 Complex Alloy Systems
	11.8 Ternary Phase Diagram
	Exercises
	Objective-type Questions
Chapter 12: Iron Carbon Equilibrium Diagram
	12.1 Solidification of Pure Iron (Constitution of Iron or Allotropy Modification of Iron)
	12.2 Iron Carbon Phase Diagram
	12.3 Phases of Iron Carbide, Phase Diagram
		12.3.1 δ-Ferrite
		12.3.2 Austenite
		12.3.3 Ferrite
		12.3.4 Cementite
		12.3.5 Pearlite
		12.3.6 Ledeburite
		12.3.7 Solubility of Carbon in Iron
	12.4 Reaction of Iron Carbon System
		12.4.1 Peritectic Reaction
		12.4.2 Eutectoid Reaction
		12.4.3 Eutectic Reaction
	12.5 Steels
		12.5.1 Solidification and Transformation of Hypoeutectoid Steel (0.4% Carbon Steel)
		12.5.2 Solidification and Transformation of Eutectoid Steel (0.8% Carbon Steel)
		12.5.3 Solidification and Transformation of Hypereutectoid Steel (1.5% Carbon Steel)
	12.6 Cast Iron
		12.6.1 Solidification and Transformation of Hypoeutectic Cast Iron (4% Carbon Cast Iron)
		12.6.2 Solidification and Transformation of Eutectic Cast Iron (4.33% Carbon Cast Iron)
		12.6.3 Solidification and Transformation of Hypereutectic Cast Iron (6.23% Carbon Cast Iron)
	12.7 Critical Temperature of the Iron and Iron Carbon Diagram
	Exercises
	Objective-type Questions
Chapter 13: Isothermal and Continuous Cooling Transformation Diagrams
	13.1 Construction of TTT Diagram
	13.2 Effect of Cooling Rate on TTT Diagram
		13.2.1 Definitions
	13.3 Continuous Cooling Transformation (CCT) Curve
	13.4 Effect of Carbon Content and Alloying Elements
	Exercises
	Objective-type Questions
Chapter 14: Heat Treatment
	14.1 Heat Treatment Purposes
		14.1.1 Temperature up to which the Metal or Alloy is Heated
		14.1.2 Length of Time the Metal or Alloy is Held at this Temperature (Holding Time)
		14.1.3 Rate of Cooling
		14.1.4 Quenching Media
	14.2 Heat Treatment of Steel
		14.2.1 Treatments that Produce Equilibrium Condition
		14.2.2 Treatments that Produce Nonequilibrium Condition
	14.3 Martempering (Interrupted Quenching)
	14.4 Austempering (Isothermal Transformation)
	14.5 Hardenability
		14.5.1 Jominy End-Quench Tests
	14.6 Surface Hardening
		14.6.1 Method in which Whole Component is Heated
		14.6.2 Method in which only Surface of Component is Heated
	14.7 Heat Treatment of Nonferrous Metals
		14.7.1 Precipitation Hardening (Age Hardening)
		14.7.2 Annealing
	Exercises
	Objective-type Questions
Chapter 15: Composite Materials
	15.1 Particulate Reinforced Composites
	15.2 Fibre Reinforced Composites
	15.3 Laminated Composite Material
	15.4 Polymer Matrix Composites
	15.5 Metal Matrix Composite
	15.6 Ceramic Matrix Composites
	15.7 Agglomerated Composite Material
	15.8 Manufacturing Methods for Composite Materials
	15.9 Manufacturing Method for Particulate Reinforced Composites
		15.9.1 Liquid-state Methods
		15.9.2 Solid-state Methods
	15.10 Manufacturing of Fibre-reinforced Polymer Matrix Composites
		15.10.1 Open Mould Process
		15.10.2 Closed Mould Process
	15.11 Manufacture of Laminated Composite
		15.11.1 Solid-state Bonding of Composite
	15.12 Mechanical Behaviours of a Composite Material
		15.12.1 Determination of E1(Longitudinal Direction or Iso-strain Condition)
		15.12.2 Determination of Young’s Modulus in the Direction of E2 (Transverse Direction or Iso-stress Condition)
		15.12.3 Determination of Poisson’s Ratio V12
		15.12.4 Determination of G12 (Shear Modulus)
	15.13 Properties of Composite Materials
	15.14 Advantages of Composites
	15.15 Limitations of Composites
	15.16 Applications
	Exercises
	Objective-type Questions
Chapter 16: Properties of Ferrous and Non-ferrous Materials
	16.1 Ferrous metals
		16.1.1 Steels
		16.1.2 Pig Iron
		16.1.3 Wrought Iron
		16.1.4 Cast Iron
	16.2 Non-ferrous Metals and Alloys
		16.2.1 Copper and Copper-based Alloys
		16.2.2 Aluminum and Its Alloys
	Exercises
	Objective-type Questions
Chapter 17: Powder Metallurgy
	17.1 Method of Producing Powders
		17.1.1 Atomization of Molten Metal
		17.1.2 Electrodeposition
		17.1.3 Reduction of a Compound
		17.1.4 Crushing and Milling
	17.2 Blending of Powder
	17.3 Compaction (Cold and Hot)
	17.4 Pre-sintering and Sintering
	17.5 Finishing Operations
	17.6 Heat Treatment
	17.7 Characteristics of Powder and Its Parts
	17.8 Applications of Some Powder Metallurgy Parts
	17.9 Advantages of Powder Metallurgy Components
	17.10 Disadvantages of Powder Metallurgy
	Exercises
	Objective-type Questions
Chapter 18: Ceramic Materials
	18.1 Classification of Ceramics
		18.1.1 Based on Fusing or Melting Temperature
		18.1.2 Based on Nature of Reaction
		18.1.3 On the Basis of Chemical Composition of the Refractories
		18.1.4 Based on the Nature of Materials
	18.2 Characteristics of Refractories
	18.3 Properties of Ceramic Materials
	18.4 Application of Ceramics
		18.4.1 Traditional Ceramics
		18.4.2 Industrial Ceramics
		18.4.3 Automotive Ceramics
		18.4.4 Tribological Ceramics
		18.4.5 Conductive Ceramics
		18.4.6 Nuclear Ceramics
		18.4.7 Optical Ceramics
		18.4.8 Pigments
	Exercises
	Objective-type Questions
Chapter 19: Corrosion of Metals and Alloys
	19.1 Electrochemical Theory of Corrosion
	19.2 Galvanic Cell
	19.3 Electrode Potential
		19.3.1 Primary Reference Electrode
		19.3.2 Secondary Reference Electrode
	19.4 Standard Electrode Potential and Electrochemical Series
	19.5 Types of Corrosion
		19.5.1 Uniform Corrosion
		19.5.2 Galvanic Corrosion
		19.5.3 Pitting Corrosion
		19.5.4 Stress Corrosion
	19.6 Prevention and Control of Corrosion
		19.6.1 Proper Design and Selection of Metals
		19.6.2 Change of Environment
		19.6.3 Change of Metal Potential
		19.6.4 Protective Coatings
		19.6.5 Passivation
	19.7 Metallic Coatings
		19.7.1 Nickel Plating
		19.7.2 Chromium Plating
		19.7.3 Silver Plating
		19.7.4 Cadmium Plating
		19.7.5 Gold Plating
	19.8 Organic Protective Coatings
	19.9 Disadvantages of Corrosion
	Exercises
	Objective-type Questions
Index




نظرات کاربران