دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: U. C. Jindal
سری:
ISBN (شابک) : 9788131759110, 9789332501256
ناشر: Pearson Education
سال نشر: 2012
تعداد صفحات: 552
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Material Science and Metallurgy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم و متالورژی مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface About the Author Chapter 1: Atomic Structure 1.1 Introduction 1.2 Isotopes 1.3 Isobars 1.4 Avogadro’s Number 1.5 Atomic Model 1.5.1 Thomson Model 1.5.2 Rutherford’s Nuclear Atomic Model 1.5.3 Bohr Atomic Model 1.5.4 Sommerfeld–Wilson Atomic Model 1.5.5 Vector Model or Quantum Model 1.6 Electron Configurations 1.7 Periodic Table Multiple Choice Questions Review Questions Chapter 2: Atomic Bonding and Crystal Structure 2.1 Introduction 2.2 Classification of Materials 2.3 Atomic Structure 2.3.1 Isotope 2.4 Space Lattice 2.5 Basis 2.5.1 Basis for Some Materials 2.6 Bravais Crystal Structure 2.7 Atomic Bonding in Solids 2.8 Primary Interatomic Bonding 2.8.1 Ionic Bonding 2.8.2 Covalent Bonding 2.8.3 Metallic Bonding 2.8.4 Molecules 2.8.5 Van Der Waals Bonding 2.9 Structures of Crystalline Solids 2.9.1 Unit Cells 2.9.2 Face-Centred Cubic (FCC) Structure 2.9.3 Body-Centred Cubic (BCC) Structure 2.9.4 Hexagonal Close-Packed (HCP) Structure 2.10 Density 2.11 Allotropy or Polymorphism 2.12 Crystallographic Directions 2.12.1 Crystallographic Direction in a Hexagonal Crystal 2.13 Crystallographic Planes 2.14 Atomic Arrangements 2.14.1 Linear and Planar Atomic Densities 2.15 Crystal Growth of Polycrystalline Materials 2.16 Single Crystal 2.16.1 Bragg’s Law Multiple Choice Questions Review Questions Practice Problems Chapter 3: Imperfections in Solids 3.1 Introduction 3.2 Point Defects 3.2.1 Schottky Defect 3.2.2 Frenkel Defect 3.3 Impurities in Solids 3.3.1 Solid Solution 3.3.2 Atom Per Cent 3.4 Line Defects 3.4.1 Burger’s Circuit and Burger’s Vector 3.4.2 Screw Dislocation 3.5 Characteristics of Dislocations 3.6 Sources of Dislocations 3.7 Stacking of Close-Packed Structures 3.8 Stacking Faults 3.9 Behaviour of Dislocations 3.9.1 Glide Motion 3.9.2 Dislocation Climb 3.9.3 Cross Slip 3.9.4 Dislocations Pile Up 3.9.5 Jogs in Dislocations 3.9.6 Interaction of Dislocation with Point Imperfections 3.9.7 Frank Read Source 3.10 Twinning 3.11 Grain Boundaries 3.12 Low-angle Grain Boundaries 3.13 Volume Imperfections 3.14 Whiskers Multiple Choice Questions Review Questions Practice Problems Chapter 4: Plastic Deformation in Crystalline Materials 4.1 Introduction 4.2 Slip in Perfect Lattice 4.3 Slip Systems 4.3.1 HCP Crystal 4.4 Critical Resolved Shear Stress for Slip 4.4.1 Tensile Test on Single Crystals 4.5 Strain Hardening of Single Crystal 4.5.1 Bauschinger’s Effect 4.6 Yield Point Phenomenon 4.7 Strain Ageing 4.8 Hardening Due to Point Defects 4.9 Mechanism of Strengthening in Metals 4.9.1 Grain Size Reduction 4.9.2 Solid Solution Alloying 4.9.3 Strain Hardening 4.9.4 Precipitation Hardening 4.10 Recovery, Recrystallization and Grain Growth 4.10.1 Recovery 4.10.2 Recrystallization 4.10.3 Laws of Crystallization 4.10.4 Grain Growth Multiple Choice Questions Review Questions Chapter 5: Mechanical Properties 5.1 Introduction 5.2 Tension Test 5.2.1 Yield Strength 5.2.2 Tension Strength 5.2.3 Percentage Elongation 5.2.4 Reduction in Area 5.2.5 Modulus of Elasticity 5.2.6 Resilience 5.2.7 Toughness 5.2.8 True Stress–Strain Curve 5.3 Hardness 5.3.1 Brinell Hardness Test 5.3.2 Vicker’S Hardness Test 5.3.3 Rockwell Hardness Test 5.3.4 Superficial Tests 5.3.5 Microhardness Tests 5.4 Fracture 5.4.1 Theoretical Cohesive Strength 5.5 Fracture Mechanics 5.5.1 Griffith Theory of Brittle Fracture 5.5.2 Stress Analysis of Cracks 5.6 Impact Fracture Testing 5.6.1 Transition 5.7 Temper Embrittlement 5.8 Hydrogen Embrittlement 5.9 Fatigue 5.9.1 Stress Cycles 5.9.2 S–N Curve 5.9.3 Crack Initiation and Propagation 5.9.4 Factors Affecting Fatigue Behaviour 5.9.5 Understressing 5.10 Creep 5.10.1 Creep Curve 5.10.2 Stress Rupture Test 5.10.3 Low-Temperature Creep 5.10.4 Engineering Creep Data 5.10.5 Creep-Resistant Alloys 5.11 Stress Relaxation Multiple Choice Questions Review Questions Practice Problems Chapter 6: Diffusion 6.1 Introduction 6.2 Diffusion Couple 6.3 Grain Boundary Diffusion and Surface Diffusion 6.4 Types of Diffusion 6.4.1 Vacancy Diffusion 6.4.2 Interstitial Diffusions 6.5 Factors Affecting Diffusion 6.6 Laws of Diffusion 6.7 Fick’s Second Law 6.8 Depth of Case Carburization 6.9 Impurity Diffusion 6.10 Diffusion-controlled Applications 6.10.1 Sintering 6.10.2 Case Carburization 6.10.3 Decarburization of Steel 6.10.4 Doping of Semiconductors 6.10.5 Conducting Ceramics 6.10.6 Annealing and Normalizing 6.10.7 Optical Fibres Coating 6.10.8 Turbine Blade Coating 6.10.9 Moisture Absorption 6.11 Kirkendal Effect Multiple Choice Questions Review Questions Practice Problems Chapter 7: Phase Diagrams 7.1 Introduction 7.2 Phases 7.3 Solidification of a Metal in an Ingot Mould 7.3.1 Dendritic Growth 7.3.2 Solidification of a Pure Metal 7.4 Types of Phase Diagrams 7.5 Binary Amorphous Alloys 7.5.1 Lever Rule 7.6 Development of Microstructure in Amorphous Alloy 7.7 Non-equilibrium cooling—Development of Microstructure in Binary Amorphous Alloy 7.8 Binary Eutectic Systems 7.8.1 Lead–Tin Eutectic System 7.9 Development of Microstructure in Eutectic Alloys 7.9.1 Eutectic Microstructure 7.10 Equilibrium Diagrams Having Intermediate Phases or Compounds 7.11 Eutectoid or Peritectic Reactions 7.11.1 Eutectoid Phase Diagram 7.12 Gibb’s Phase Rule 7.13 Iron Carbon System 7.13.1 Phases Fe and Fe3C 7.14 Microstructural Developments 7.14.1 Iron–Carbon Alloys 7.14.2 Hypereutectoid Steels Multiple Choice Questions Review Questions Practice Problems Chapter 8: Phase Transformations 8.1 Introduction 8.2 Solidification of Metal in Ingot Mould 8.2.1 Cavities 8.2.2 Gas Holes 8.2.3 Segregation 8.3 Types of Phase Transformations 8.4 Nucleation and Growth Kinetics 8.4.1 Kinetics of Solid State Reaction 8.5 Multiphase Transformations 8.6 Pearlitic Transformation 8.6.1 Coarse Pearlite 8.6.2 Fine Pearlite 8.7 Bainite Transformation 8.7.1 Spheroidite 8.8 Martensitic Transformation 8.9 Formation of Austenite 8.9.1 Grain Size of Austenite 8.9.2 Grain Size Measurement 8.10 Precipitation and Age Hardening 8.10.1 Precipitation in Al–4 Wt% Cu Alloy (Duralumin) 8.11 Continuous Cooling Transformation Curve 8.12 Mechanical Behaviour of Iron–Carbon Alloys 8.12.1 Pearlite 8.12.2 Spheroidite 8.12.3 Bainite 8.12.4 Martensite 8.12.5 Tempered Martensite 8.12.6 Temper Embrittlement Multiple Choice Questions Review Questions Practice Problems Chapter 9: Heat Treatment of Steels 9.1 Introduction 9.2 Heat Treatment Processes 9.3 Temperature Ranges of Various Heat Treatment Processes 9.3.1 Critical Temperatures 9.4 Annealing 9.4.1 Spheroidize Annealing 9.4.2 Diffusion Annealing 9.5 Normalizing 9.6 Hardening 9.7 Hardenability 9.7.1 End Quench Test 9.8 Hardening Methods 9.8.1 Austempering or Isothermal Quenching 9.9 Tempering 9.10 Subzero Treatment of Steel 9.11 Diffusion Treatments 9.11.1 Carburizing 9.11.2 Case Depth 9.11.3 Nitriding 9.11.4 Carbonitriding 9.11.5 Cyaniding 9.12 Surface Hardening Techniques 9.12.1 Flame Hardening 9.12.2 Induction Hardening 9.12.3 Surface Hardening by Laser and Electron Beams 9.13 Special Purpose Heat Treatments 9.13.1 Ferritic Nitrocarbonizing 9.13.2 Cementation 9.13.3 Boronizing 9.13.4 Metalliding 9.13.5 Toyota Diffusion 9.13.6 Vacuum Carburizing 9.13.7 Salt Nitriding Multiple Choice Questions Review Questions Chapter 10: Metals and Alloys 10.1 Introduction 10.2 Types of Ferrous Alloys 10.3 Plain Carbon Steels 10.3.1 Types of Steels 10.3.2 Specifications of Steels 10.3.3 Low and Medium Alloy Steels with 10 Per Cent Alloy Content 10.4 Alloy Steels 10.4.1 Miscellaneous Alloy Steels 10.4.2 Applications of Alloy Steels 10.5 Stainless Steels 10.5.1 Applications 10.6 Cast Irons 10.6.1 Rate of Cooling 10.6.2 Effect of Chemical Compositions 10.6.3 Formation of Graphite 10.6.4 Ductile or Nodular Iron 10.6.5 Malleable Iron and White Cast Iron 10.6.6 High Strength Cast Irons 10.7 Non-ferrous Alloys 10.8 Copper and its Alloys 10.9 Aluminium and its Alloys 10.9.1 Aluminium–Lithium Alloys 10.10 Nickel Base Alloys 10.11 Magnesium and its Alloys 10.12 Titanium and its Alloys 10.13 Zinc 10.13.1 Die Castings 10.13.2 Zinc Coatings 10.14 Refractory Metals 10.15 Superalloys 10.16 Bearing Metals 10.17 Aircraft Materials 10.17.1 Special Steels 10.17.2 Nickel Alloys 10.17.3 Copper and Its Alloys 10.17.4 Wrought Aluminium Alloys 10.17.5 Magnesium Alloys 10.17.6 Plastics 10.17.7 Glass 10.17.8 Rubber Multiple Choice Questions Review Questions Chapter 11: Organic Materials 11.1 Introduction 11.2 Types of Organic Materials 11.2.1 Monomers 11.3 Types of Polymers 11.4 Degree of Polymerization 11.5 Geometry of Polymeric Chains 11.5.1 Molecular Structure 11.6 Mechanism of Polymerization 11.7 Homopolymerization and Copolymerization 11.8 Condensation Polymerization 11.9 Additives in Polymers 11.9.1 Fillers 11.9.2 Plasticizers 11.9.3 Stabilizers 11.9.4 Catalysts 11.9.5 Initiators 11.9.6 Colourants 11.9.7 Flame Retardants 11.10 Strengthening Mechanisms of Polymers 11.10.1 Graft Copolymers 11.10.2 Deformation of Polymers 11.11 Stereotactic Synthesis 11.12 Plastics 11.13 Fibers and Filaments 11.14 Elastomers and Rubbers 11.14.1 Vulcanization 11.14.2 Synthetic Rubbers 11.15 Mechanical and Thermal Behavior of Polymers 11.15.1 Thermal Behaviour 11.16 Special Purpose Plastics 11.16.1 Conducting Polymers 11.16.2 Expanding Plastics 11.16.3 Plastics in Electronics 11.16.4 Thermoplast–Thermoset Plastics 11.16.5 Liquid Crystal Polymers (LCP) 11.16.6 Biomedical Polymers 11.16.7 Polymer Foams Multiple Choice Questions Review Questions Practice Problems Chapter 12: Ceramic Materials 12.1 Introduction 12.2 Classification of Ceramics 12.3 Refractories 12.4 Silicates and Silica 12.4.1 Silica 12.5 Structure of Glasses 12.6 Glasses 12.7 Thermal Behavior of Glasses 12.7.1 Glass Transition Temperature, Tg 12.8 Lime 12.9 Polymorphs of Carbon 12.9.1 Diamond 12.9.2 Graphite 12.9.3 Siliconized Grades 12.9.4 Fullerenes 12.10 Carbon Products and Hard Ceramics 12.10.1 Cemented Carbides 12.10.2 Aluminium Oxide (Al2O3) 12.10.3 Silicon Carbide 12.10.4 Silicon Nitride (SI3N4) 12.10.5 Partially Stabilized Zirconia (PSZ) 12.11 Clay-based Ceramics 12.12 Cement 12.13 Concrete Multiple Choice Questions Review Questions Chapter 13: Composite Materials 13.1 Introduction 13.2 Types of Composites 13.3 Large Particle Composites 13.4 Dispersion-strengthened Composites 13.5 Fiber-reinforced Composites 13.5.1 Effect of Fibre Length 13.5.2 Stress–Strain Diagram (Composite) 13.5.3 Stage I of Deformation (OA) 13.5.4 Stage II (A to B) 13.5.5 Law of Mixture 13.5.6 Transverse Modulus 13.5.7 Discontinuous and Aligned Fibre Composites 13.6 Fiber Phase 13.6.1 Wires 13.7 Matrix Phase 13.8 Polymer Matrix Composites 13.8.1 Matrix Materials 13.8.2 Reinforcements 13.8.3 Fabrication Techniques 13.8.4 Continuous Pultrusion 13.8.5 Vacuum Bag Forming 13.9 Ceramic Matrix Composites 13.9.1 Transformation Toughening 13.10 Carbon–carbon Composites 13.11 Metal Matrix Composites 13.11.1 Applications of MMC 13.12 Hybrid Composites 13.13 Structural Composites 13.13.1 Sandwich Panels Multiple Choice Questions Review Questions Practice Problems Chapter 14: Wear of Materials 14.1 Introduction 14.2 History of Friction and Wear 14.3 Contact Mechanics 14.3.1 Two Surfaces are Flat 14.3.2 One Flat and Other Curved Surface 14.3.3 Two Curved Surfaces in Contact 14.4 Friction 14.5 Measurements 14.6 Definition of Wear 14.7 Forms of Wear 14.8.1 Adhesive 14.8.2 Galling 14.8.3 Scuffing 14.8.4 Oxidative Wear 14.8.5 Fretting 14.8 Sliding Contact Wear 14.9 Abrasive Wear 14.9.1 Low-Stress Abrasion 14.9.2 High-Stress Abrasion 14.9.3 Gouging Abrasion 14.9.4 Polishing Abrasion 14.10 Types of Erosion 14.10.1 Solid Erosion 14.10.2 Slurry Erosion 14.10.3 Liquid Impact Erosion 14.10.4 Liquid Erosion 14.10.5 Cavitation 14.11 Surface Fatigue 14.12 Protection Against Wear 14.12.1 Electroplating 14.12.2 Anodizing 14.12.3 Diffusion 14.12.4 Metal Spraying 14.12.5 Hard Facing 14.13 Hard Facing 14.14 Bearings 14.15 Lubrication 14.15.1 Oils 14.15.2 Greases 14.15.3 Solid Film Lubricants Multiple Choice Questions Review Questions Chapter 15: Corrosion and Oxidation 15.1 Introduction 15.2 Electrochemical Reaction 15.3 Electrochemical Process 15.3.1 Standard Hydrogen Reference Electrode 15.4 Electrolytes 15.5 Galvanic Cell 15.6 Types of Corrosion 15.7 Laws of Corrosion 15.8 Corrosion Rate 15.9 Dry Corrosion 15.9.1 Scale Types 15.9.2 Kinetics 15.10 Rusting of Steel 15.11 Various Forms of Corrosion 15.11.1 Uniform Corrosion 15.11.2 Pitting 15.11.3 Crevice 15.11.4 Galvanic Corrosion 15.11.5 Stress Corrosion Cracking 15.11.6 Hydrogen Embrittlement 15.11.7 Intergranular Attack 15.11.8 Dealloying 15.12 Factors Affecting Corrosion 15.12.1 Redox Potential 15.12.2 Metallurgical Effects 15.12.3 Passivity 15.12.4 Chemical Nature 15.12.5 Operating Conditions 15.12.6 Polarization 15.13 Corrosion Fatigue 15.14 Corrosion of Ceramic Materials 15.15 Degradation of Polymers 15.16 Guidelines for Protection Against Corrosion and Oxidation 15.16.1 Metals and Alloys 15.16.2 Environmental Control 15.16.3 Inhibitors 15.16.4 Design Multiple Choice Questions Review Questions Chapter 16: Thermal Properties 16.1 Introduction 16.2 Temperature Scale 16.3 Melting Point 16.4 Heat Capacity 16.5 Temperature Dependence of Heat Capacity 16.6 Thermal Shock 16.7 Thermal Conductivity 16.7.1 Weidemann–Franz Law 16.7.2 Polymers 16.8 Thermal Expansion 16.8.1 Metals 16.8.2 Ceramics 16.8.3 Polymers 16.9 Thermal Stresses 16.9.1 Restrained Thermal Expansion or Contraction 16.9.2 Stresses Due to Temperature Gradients 16.9.3 Thermal Stresses in Components of Two Dissimilar Metals 16.10 Materials for High-temperature Applications 16.11 Materials for Low-temperature Applications Multiple Choice Questions Review Questions Practice Problems Chapter 17: Electrical Conductivity and Insulating Properties 17.1 Introduction 17.2 Ohm’s Law 17.2.1 Electrical Conductivity 17.3 Commonly Used Conducting Materials 17.4 High-resistivity Materials 17.5 Electron Configuration 17.6 Electron Energy Band 17.6.1 Fermi Energy Level 17.7 Different Types of Band Structures 17.8 Band and Atomic Bonding Model for Conduction 17.8.1 Insulators and Semiconductors 17.9 Electron Mobility 17.10 Electrical Resistivity of Metals 17.10.1 Influence of Temperature 17.10.2 Influence of Impurities 17.10.3 Influence of Plastic Deformation 17.11 Electronic and Ionic Conduction 17.12 Commercial Alloys 17.13 Insulation 17.14 High-voltage Insulators 17.15 Insulation of Antennas 17.16 Insulation of Electrical Apparatus 17.17 Class I and Class II Insulation 17.18 Properties of Insulating Materials Multiple Choice Questions Review Questions Practice Problems Chapter 18: Semiconductors 18.1 Introduction 18.2 Semiconduction 18.2.1 Intrinsic Semiconductors 18.3 Temperature Effect on Intrinsic Semiconductor 18.4 Extrinsic Semiconductors 18.4.1 N-Type Semiconductors 18.4.2 P-Type Extrinsic Semiconductors 18.5 Hall Effect 18.6 Variation of Conductivity with Temperature and Carrier Concentration 18.6.1 Extrinsic Conductivity 18.7 Semiconductor Devices 18.7.1 Forward Bias 18.7.2 Reverse Bias 18.8 Infrared Detectors and Photoconductors 18.9 Thermoelectrics 18.10 Transistors 18.10.1 Junction Transistor 18.10.2 Mosfet 18.11 Microelectronic Circuitry 18.12 Applications of Semiconductors 18.12.1 III–V Semiconductors 18.12.2 II–VI Semiconductors 18.12.3 Miscellaneous Oxides 18.12.4 Organic Semiconductors 18.12.5 Magnetic Semiconductors Multiple Choice Questions Review Questions Practice Problems Chapter 19: Dielectric Properties 19.1 Introduction 19.2 Dielectric Behaviour 19.3 Dipole Moment and Polarization 19.4 Polarization of an Electric Field 19.4.1 Electronic Polarization 19.4.2 Ionic Polarization 19.4.3 Orientation Polarization 19.5 Frequency Dependence of Dielectric Constant 19.6 Effect of Temperature on Dielectric Constant 19.7 Dielectric Losses 19.8 Dielectric Breakdown 19.9 Ferroelectricity 19.10 Piezoelectricity 19.11 Dielectric Materials 19.12 Practical Dielectrics Multiple Choice Questions Review Questions Practice Problems Chapter 20: Magnetic Properties 20.1 Introduction 20.2 Magnetism 20.2.1 Magnetic Behaviour 20.3 Magnetic Field Vectors 20.3.1 Magnetic Moments 20.4 Magnetization Curves 20.4.1 Paramagnetism 20.5 Ferromagnetism 20.5.1 Anti-Ferromagnetism 20.6 Ferrimagnetism 20.6.1 Spinal and Garnet Ferrites 20.7 Magnetostriction 20.8 Effect of Temperature on Magnetic Behaviour 20.9 Domains 20.10 Hysteresis 20.11 Soft Magnetic Materials 20.12 Hard Magnetic Materials 20.12.1 High-Energy Hard Magnetic Materials 20.13 Magnetic Storage 20.14 Commonly Used Magnetic Materials 20.15 Superconductivity 20.15.1 Applications of Superconductors Multiple Choice Questions Review Questions Practice Problems Chapter 21: Optical Properties of Materials 21.1 Introduction 21.1.1 the Particle Characteristic of EM Waves 21.1.2 Waves of Electric and Magnetic Fields 21.2 Electromagnetic Wave Propagation in Solids 21.3 Reflection and Refraction at the Interface 21.4 The Electromagnetic Spectrum 21.5 Absorption and Scattering 21.5.1 Scattering 21.5.2 Selective Absorption 21.6 Colour 21.7 Fluorescence, Phosphorescence and Luminescence 21.8 Laser 21.8.1 Ruby Laser 21.8.2 Hene Laser 21.8.3 CO2 Laser 21.8.4 Dye Laser 21.8.5 Semiconductor Laser 21.8.6 Properties of Laser Light 21.8.7 Applications of Laser 21.9 The Fibre Optic Communication Multiple Choice Questions Review Questions Practice Problems Index