دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Z. Yang (Author)
سری:
ISBN (شابک) : 9780367353209, 9781000690880
ناشر: CRC Press
سال نشر: 2019
تعداد صفحات: 327
زبان:
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 66 مگابایت
در صورت تبدیل فایل کتاب Material Modeling in Finite Element Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی مواد در تحلیل المان محدود نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل المان محدود به طور گسترده در طراحی های مکانیکی، عمرانی و زیست پزشکی استفاده شده است. هدف این کتاب ارائه دیدگاههای جامعی از مدلهای مختلف مواد با مثالهای کاربردی است که به خوانندگان کمک میکند تا مواد مختلف را درک کنند و مدلهای مناسب مواد را در تحلیل اجزای محدود بسازند. این کتاب از چهار بخش اصلی تشکیل شده است: 1) فلزات، 2) پلیمرها، 3) خاک ها و 4) مواد مدرن. هر قسمت با ساختار و عملکرد مواد مختلف شروع می شود و سپس از مدل های متریال متناظر مانند BISO، MISO، مدل Chaboche در فلزات، مدل Arruda-Boyce، مدل Mooney-Rivlin، مدل Ogden در پلیمرها، مدل Mohr-Coulomb، Cam. مدل خاک رس و مدل سنگ اتصال در ژئومکانیک، کامپوزیت ها و آلیاژهای حافظه شکل در مواد مدرن. بخش پایانی برخی از مشکلات خاص مانند فرآیند شکلدهی فلز، محفظه احتراق، اثر مولینز تایر لاستیکی، شکل سینه پس از جراحی سینه، ویسکوالاستیسیته بافتهای نرم کبد، حفاری تونل، پایداری شیب، سیم ارتودنسی و میکروشتابسنج پیزوالکتریک را ارائه میکند. تمامی فایل های مدل سازی در پیوست های کتاب ارائه شده است. این کتاب برای دانشجویان فارغ التحصیل و محققان در زمینه های مکانیک، عمران و زیست پزشکی که تجزیه و تحلیل اجزای محدود را انجام می دهند مفید خواهد بود. این کتاب به همه خوانندگان درک جامعی از مدل سازی مواد مختلف ارائه می دهد.
Finite element analysis has been widely applied in mechanical, civil, and biomedical designs. This book aims to provide the readers comprehensive views of various material models with practical examples, which would help readers understand various materials, and build appropriate material models in the finite element analysis. This book is composed of four main parts: 1) metals, 2) polymers, 3) soils, and 4) modern materials. Each part starts with the structure and function of different materials and then follows the corresponding material models such as BISO, MISO, Chaboche model in metals, Arruda-Boyce model, Mooney-Rivlin model, Ogden model in polymers, Mohr-Coulomb model, Cam Clay model and Jointed Rock model in geomechanics, composites and shape memory alloys in modern materials. The final section presents some specific problems, such as metal forming process, combustion chamber, Mullins effect of rubber tire, breast shape after breast surgery, viscoelasticity of liver soft tissues, tunnel excavation, slope stability, orthodontic wire, and piezoelectric microaccelerometer. All modeling files are provided in the appendixes of the book. This book would be helpful for graduate students and researchers in the mechanical, civil, and biomedical fields who conduct finite element analysis. The book provides all readers with comprehensive understanding of modeling various materials.
Cover Half Title Title Page Copyright Page Contents Preface Author 1: Introduction Part I: Metal 2: Structure and Material Properties of Metal 2.1 Structure of Metal 2.2 Elasticity and Plasticity of Metal Reference 3: Some Plastic Material Models of Metals and Definition of Their Parameters 3.1 Introduction of Plasticity 3.2 Isotropic Hardening Models and Definition of Material Parameters for 304 Stainless Steel 3.2.1 Multilinear Isotropic Hardening (MISO) 3.2.2 Voce Law Nonlinear Isotropic Hardening 3.3 Nonlinear Kinematic Hardening 3.4 Summary References 4: Simulation of Metal Forming 4.1 Introduction of Metal Forming 4.2 Simulation of Forming of a Sheet 4.2.1 Finite Element Model 4.2.2 Material Properties 4.2.3 Contact Definition 4.2.4 Loadings and Boundary Conditions 4.2.5 Solution Setting 4.2.6 Results 4.2.7 Summary References 5: Simulation of Ratcheting 5.1 Introduction of Ratcheting 5.2 Simulation of Ratcheting in a Notched Bar 5.2.1 Finite Element Model 5.2.2 Material Properties 5.2.3 Loadings and Boundary Conditions 5.2.4 Results 5.2.5 Summary References 6: Influence of Temperature on Material Properties 6.1 Temperature Dependency of Material Properties 6.2 Simulation of Combustion Chamber under Different Temperatures 6.2.1 Finite Element Model 6.2.2 Material Properties 6.2.3 Loadings and Boundary Conditions 6.2.4 Results 6.2.5 Discussion 6.2.6 Summary References 7: Simulation of Creep 7.1 Introduction of Creep 7.1.1 Creep 7.1.2 Creep Constitutive Law 7.1.3 Subroutine UserCreep 7.2 Simulation of Creep of a Bolt under Pretension 7.2.1 Finite Element Model 7.2.2 Material Properties 7.2.3 Loadings and Boundary Conditions 7.2.4 Solution Setting 7.2.5 Results 7.2.6 Discussion 7.2.7 Summary References Part II: Polymers 8: Structure and Features of Polymer 8.1 Structure of Polymer 8.2 Features of Polymer References 9: Hyperelasticity 9.1 Some Widely Used Hyperelastic Models 9.1.1 Neo-Hookean Model 9.1.2 Mooney–Rivlin Model 9.1.3 Yeoh Model 9.1.4 Polynomial Model 9.1.5 Gent Model 9.1.6 Ogden Model 9.1.7 Arruda–Boyce Model 9.2 Stability Discussion 9.3 Curve-fitting of Material Parameters from Experimental Data 9.4 Simulation of a Rubber Rod under Compression 9.4.1 Finite Element Model 9.4.2 Material Parameters 9.4.3 Loadings and Boundary Conditions 9.4.4 Results 9.4.5 Discussion 9.4.6 Summary 9.5 Simulation of Breast Implant in ANSYS 9.5.1 Finite Element Model 9.5.2 Material Models 9.5.3 Loading and Solution Setting 9.5.4 Results 9.5.5 Discussion 9.5.6 Summary References 10: Viscoelasticity of Polymers 10.1 Viscoelasticity of Polymers 10.2 Linear Viscoelastic Models 10.2.1 Maxwell Model 10.2.2 Kelvin–Voigt Model 10.2.3 Burgers Model 10.2.4 Generalized Maxwell Model 10.3 Viscoplasticity Models 10.4 Simulation of Viscoelasticity of Liver Soft Tissues 10.4.1 Finite Element Model 10.4.2 Material Properties 10.4.3 Contact Definition 10.4.4 Loadings and Boundary Conditions 10.4.5 Results 10.4.6 Discussion 10.4.7 Summary References 11: Mullins Effect 11.1 Introduction of Mullins Effect 11.2 Ogden–Roxburgh Mullins Effect Model 11.3 Simulation of a Rubber Tire with the Mullins Effect 11.3.1 Finite Element Model 11.3.2 Material Properties 11.3.3 Loadings and Boundary Conditions 11.3.4 Results 11.3.5 Discussion 11.3.6 Summary References 12: Usermat for Hyperelastic Materials 12.1 Introduction of Subroutine UserHyper 12.2 Simulation of Gent Hyperelasticity 12.2.1 Subroutine UserHyper for Gent Material 12.2.2 Validation 12.2.3 Summary References Part III: Soil 13: Soil Introduction 13.1 Soil Structure 13.2 Soil Parameters References 14: Cam Clay Model 14.1 Introduction of Modified Cam Clay Model 14.2 Cam Clay Model in ANSYS 14.2.1 Elastic Component 14.2.2 Plastic Component 14.3 Simulation of a Tower on the Ground by Cam Clay Model 14.3.1 Finite Element Model 14.3.2 Material Properties 14.3.3 Contact Definition 14.3.4 Loadings and Boundary Conditions 14.3.5 Results 14.3.6 Discussion 14.3.7 Summary References 15: Drucker–Prager Model 15.1 Introduction of Drucker–Prager Model 15.2 Study of a Soil–Arch Interaction 15.2.1 Finite Element Model 15.2.2 Material Properties 15.2.3 Boundary Conditions and Loadings 15.2.4 Results 15.2.5 Discussion 15.2.6 Summary References 16: Mohr–Coulomb Model 16.1 Introduction of Mohr–Coulomb Model 16.2 Mohr–Coulomb Model in ANSYS 16.3 Study of Slope Stability 16.3.1 Finite Element Model 16.3.2 Material Properties 16.3.3 Loadings and Boundary Conditions 16.3.4 Results 16.3.5 Discussion 16.3.6 Summary References 17: Jointed Rock Model 17.1 Jointed Rock Model 17.2 Definition of the Jointed Rock Model in ANSYS 17.2.1 Defining the Base Material 17.2.2 Defining the Joints 17.3 Simulation of Tunnel Excavation 17.3.1 Finite Element Model 17.3.2 Material Properties 17.3.3 Loadings and Boundary Conditions 17.3.4 Solution 17.3.5 Results 17.3.6 Discussion 17.3.7 Summary References 18: Consolidation of Soils 18.1 Consolidation of Soils 18.2 Modeling Porous Media in ANSYS 18.3 Simulation of Consolidation of Three-Well Zone 18.3.1 Finite Element Model 18.3.2 Material Properties 18.3.3 Boundary Conditions and Loadings 18.3.4 Solutions 18.3.5 Results 18.3.6 Discussion 18.3.7 Summary References Part IV: Modern Materials 19: Composite Materials 19.1 Introduction of Composite Materials 19.2 Modeling Composite in ANSYS 19.2.1 Modeling Composite by Command SECTYPE 19.2.2 Modeling a Composite by Anisotropic Model 19.3 Simulation of Composite Structure in Failure Test 19.3.1 Finite Element Model 19.3.2 Material Properties 19.3.3 Boundary Conditions and Loadings 19.3.4 Results 19.3.5 Discussion 19.3.6 Summary 19.4 Simulation of Crack Growth in Single Leg Bending Problem 19.4.1 Finite Element Model 19.4.2 Properties 19.4.3 Crack Definition 19.4.4 Boundary Conditions and Loadings 19.4.5 Results 19.4.6 Discussion 19.4.7 Summary References 20: Functionally Graded Materials 20.1 Introduction of Functionally Graded Materials 20.2 Material Model of Functionally Graded Materials 20.3 Simulation of a Spur Gear Fabricated Using Functionally Graded Materials 20.3.1 Finite Element Model 20.3.2 Properties 20.3.3 Loadings and Boundary Conditions 20.3.4 Results 20.3.5 Discussion 20.3.6 Summary References 21: Shape Memory Alloys 21.1 Structure of SMAs and Various Material Models 21.1.1 Structure of SMAs 21.1.1.1 Superelasticity 21.1.1.2 Shape Memory Effect 21.1.2 Various SMA Material Models 21.1.2.1 SMA Model for Superelasticity 21.1.2.2 SMA Model with Shape Memory Effect 21.1.3 Definition of Material Parameters 21.1.3.1 SMAs with Superelasticity 21.1.3.2 SMAs with Shape Memory Effect 21.2 Simulation of Orthodontic Wire 21.2.1 Finite Element Model 21.2.2 Material Properties 21.2.3 Loadings and Boundary Conditions 21.2.4 Results 21.2.5 Discussion 21.2.6 Summary 21.3 Simulation of a Vacuum-Tight Shape Memory Flange 21.3.1 Finite Element Model 21.3.2 Material Properties 21.3.3 Contact 21.3.4 Loadings and Boundary Conditions 21.3.5 Solutions 21.3.6 Results 21.3.7 Discussion 21.3.8 Summary References 22: Simulation of Piezoelectricity 22.1 Introduction of Piezoelectricity 22.2 Structures and Mechanical Behaviors of Piezoelectric Materials 22.3 Constitutive Equation of Piezoelectricity 22.4 Simulation of Piezoelectric Accelerometer 22.4.1 Finite Element Model 22.4.2 Material Properties 22.4.3 Boundary Conditions and Loadings 22.4.4 Results 22.4.5 Discussion 22.4.6 Summary References 23: Nanomaterials 23.1 Introduction of Nano 23.2 Determination of Young’s Modulus of Fe Particles 23.2.1 Experiment 23.2.2 Finite Element Model 23.2.3 Material Properties 23.2.4 Boundary Conditions and Loadings 23.2.5 Solution 23.2.6 Results 23.2.7 Discussion 23.2.8 Summary References Part V: Retrospective 24: Retrospective Appendix 1: Input File of Curve-Fitting of the Chaboche Model in Section 3.3 Appendix 2: Input File of the Forming Process Model in Section 4.2 Appendix 3: Input File of the Ratcheting Model in Section 5.2 Appendix 4: Input File of the Combustion Chamber Model in Section 6.2 Appendix 5: Input File of the Bolt Model under Pretension in Section 7.2 Appendix 6: Input File of Curve-Fitting of the Ogden Model in Section 9.3 Appendix 7: Input File of the Rubber Rod Model under Compression in Section 9.4 Appendix 8: Input File of the Liver Soft Tissue Model in Section 10.4 Appendix 9: Input File of the Rubber Tire Damage Model in Section 11.3 Appendix 10: Input File of UserHyper in Section 12.2 Appendix 11: Input File of the Tower Subsidence Model in Section 14.3 Appendix 12: Input File of the Soil–Arch Interaction Model in Section 15.2 Appendix 13: Input File of the Slope Stability Model in Section 16.3 Appendix 14: Input File of the Tunnel Excavation Model in Section 17.3 Appendix 15: Input File of the Settlement Model in Section 18.3 Appendix 16: Input File of the Composite Damage Model in Section 19.3 Appendix 17: Input File of the SLB Model in Section 19.4 Appendix 18: Input File of the Spur Gear Model with FGM in Section 20.3 Appendix 19: Input File of the Orthodontic Wire Model in Section 21.2 Appendix 20: Input File of the Vacuum Tight Shape Memory Flange Model in Section 21.3 Appendix 21: Input File of the Piezoelectric Microaccelerometer Model in Section 22.4 Appendix 22: Input File of the Contact Model in Section 23.2 Index