دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Kris Hermans
سری:
ناشر: Cybellium
سال نشر: 2023
تعداد صفحات: 329
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 Mb
در صورت تبدیل فایل کتاب Mastering Probability and Statistics: A Comprehensive Guide to Learn Probability and Statistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تسلط بر احتمال و آمار: راهنمای جامع برای یادگیری احتمالات و آمار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
1. The Significance of Probability and Statistics 1.1 Understanding Probability and Statistics in the Modern World 1.2 Historical Evolution and Influence on Decision Making 1.3 Probability and Statistics in Science, Business, and Research 2. Fundamentals of Probability Theory 2.1 Basics of Probability: Sample Space, Events, and Probability Axioms 2.2 Conditional Probability and Independence 2.3. Combinatorics and Counting Principles 3. Discrete Probability Distributions 3.1. Probability Mass Functions and Expected Values 3.2. Bernoulli, Binomial, and Poisson Distributions 3.3. Geometric and Negative Binomial Distributions 4. Continuous Probability Distributions 4.1. Probability Density Functions and Cumulative Distribution Functions 4.2. Normal Distribution and Standardization 4.3. Exponential and Uniform Distributions 5. Multivariate Probability Distributions 5.1. Joint, Marginal, and Conditional Distributions 5.2. Bivariate Normal Distribution 5.3. Copulas and Dependence Structures 6. Sampling and Sampling Distributions 6.1. Simple Random Sampling and Sampling Techniques 6.2. Sampling Distribution of Sample Mean and Central Limit Theorem 6.3. Estimation and Confidence Intervals 7. Hypothesis Testing 7.1. Null and Alternative Hypotheses 7.2. Type I and Type II Errors 7.3. Parametric and Nonparametric Tests 8. Linear Regression Analysis 8.1. Simple Linear Regression: Model and Estimation 8.2. Multiple Linear Regression: Model and Diagnostics 8.3. Regression Inference and Interpretation 9. Nonlinear and Generalized Linear Models 9.1. Polynomial Regression and Model Selection 9.2. Logistic Regression and Binary Classification 9.3. Poisson Regression and Count Data Modeling 10. Multivariate Descriptive Statistics 10.1. Multivariate Data and Data Visualization 10.2. Principal Component Analysis (PCA) and Dimensionality Reduction 10.3. Factor Analysis and Exploratory Data Analysis 11. Multivariate Inferential Statistics 11.1. Multivariate Analysis of Variance (MANOVA) 11.2. Multivariate Regression and Canonical Correlation Analysis 11.3. Clustering and Classification Techniques 12. Time Series Basics and Descriptive Methods 12.1. Time Series Data and Components 12.2. Smoothing Techniques and Moving Averages 12.3. Decomposition and Seasonal Decomposition 13. Time Series Forecasting 13.1. ARIMA Models and Box-Jenkins Methodology 13.2. Exponential Smoothing Methods 13.3. State Space Models and Forecast Accuracy Evaluation 14. Introduction to Bayesian Inference 14.1. Bayes' Theorem and Posterior Distribution 14.2. Bayesian Parameter Estimation and Credible Intervals 14.3. Bayesian Hypothesis Testing and Model Comparison 15. Markov Chain Monte Carlo (MCMC) Methods 15.1. Metropolis-Hastings Algorithm 15.2. Gibbs Sampling and Hamiltonian Monte Carlo 15.3. Practical Considerations and Convergence Diagnostics 16. Experimental Design and Analysis of Variance (ANOVA) 16.1. One-Way ANOVA and Post Hoc Tests 16.2. Factorial and Nested ANOVA Designs 16.3. Design of Experiments and Response Surface Methodology 17. Nonparametric Statistics and Robust Methods 17.1. Wilcoxon Rank-Sum and Signed-Rank Tests 17.2. Kruskal-Wallis and Friedman Tests 17.3. Robust Regression and Outlier Detection 18. Bayesian Networks and Causal Inference 18.1. Probabilistic Graphical Models and Bayesian Networks 18.2. Causal Inference and Counterfactuals 18.3. Applications of Bayesian Networks and Causal Inference in Health, Social Sciences, and Economics 19. Machine Learning and Statistics Integration 19.1. Synergies and Overlaps between Machine Learning and Statistics 19.2. Model Evaluation and Cross-Validation 19.3. Bias-Variance Trade-off and Model Selection 20. Statistics in Business and Economics 20.1. Descriptive Business Analytics 20.2. Demand Forecasting and Inventory Management 20.3. Regression Analysis in Marketing Research 21. Bistatistics and Medical Applications 21.1. Clinical Trials and Experimental Design 21.2. Survival Analysis and Cox Proportional Hazards Model 21.3. Epidemiological Studies and Public Health Analysis 22. Data Science and Big Data Analytics 22.1. Statistical Learning in Big Data Environments 22.2. Text Mining and Sentiment Analysis 22.3. Anomaly Detection and Fraud Analytics 23. Ethics in Data Analysis and Reporting 23.1. Data Privacy and Confidentiality 23.2. Avoiding Data Manipulation and Bias 23.3. Responsible Interpretation and Reporting 24. Emerging Trends and Future Directions 24.1. Bayesian Deep Learning and Probabilistic Graph Neural Networks 24.2. Interpretability and Explainable AI 24.3. Challenges and Opportunities in Advanced Analytics 25. Appendix 25.1. Statistical Tables and Formulas 25.2. Glossary of Probability and Statistics Terminology 25.3. Statistical Software and Programming Resources 25.4. Recommended Readings and Further Study 25.5. About the author