دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd Edition
نویسندگان: Bonaccorso. Giuseppe
سری:
ISBN (شابک) : 9781838821913, 1838821910
ناشر: Packt Publishing
سال نشر: 2020;2019
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 94 مگابایت
کلمات کلیدی مربوط به کتاب تسلط بر الگوریتم های یادگیری ماشین تکنیک های تخصصی برای پیاده سازی الگوریتم های محبوب یادگیری ماشین ، تنظیم دقیق مدل های خود و درک نحوه کار آنها: الگوریتم های کامپیوتری، یادگیری ماشینی، کتاب های الکترونیکی
در صورت تبدیل فایل کتاب Mastering Machine Learning Algorithms Expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and understanding how they work به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تسلط بر الگوریتم های یادگیری ماشین تکنیک های تخصصی برای پیاده سازی الگوریتم های محبوب یادگیری ماشین ، تنظیم دقیق مدل های خود و درک نحوه کار آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب راهنمای شما برای دستیابی سریع به پرکاربردترین الگوریتمهای یادگیری ماشینی است. به عنوان یک متخصص علوم داده، این کتاب به شما کمک میکند مدلهای یادگیری ماشینی بهتری را طراحی و آموزش دهید تا انواع مشکلات پیچیده را حل کنید و ماشین را وادار کنید نیازهای شما را یاد بگیرد.
This book is your guide to quickly get to grips with the most widely used machine learning algorithms. As a data science professional, this book will help you design and train better machine learning models to solve a variety of complex problems, and make the machine learn your requirements.
Copyright Packt Page Contributors Table of Contents Preface Chapter 1: Machine Learning Model Fundamentals Models and data Structure and properties of the datasets Limited Sample Populations Scaling datasets Whitening Training, validation, and test sets Cross-validation Characteristics of a machine learning model Learnability Capacity of a model Vapnik-Chervonenkis capacity Bias of an estimator Underfitting Variance of an estimator Overfitting The Cramér-Rao bound Summary Further reading Chapter 2: Loss Functions and Regularization Defining loss and cost functions Examples of cost functions Mean squared error Huber cost function Hinge cost function Categorical cross-entropy Regularization Examples of Regularization Techniques L2 or Ridge regularization L1 or Lasso regularization ElasticNet Early stopping Summary Further reading Chapter 3: Introduction to Semi-Supervised Learning Semi-supervised scenario Causal scenarios Transductive learning Inductive learning Semi-supervised assumptions Smoothness assumption Cluster assumption Manifold assumption Generative Gaussian Mixture Generative Gaussian Mixture theory Example of a Generative Gaussian Mixture Generative Gaussian Mixtures summary Weighted log-likelihood Self-Training Self-Training theory Example of Self-Training with the Iris dataset Self-Training summary Co-Training Co-Training theory Example of Co-Training with the Wine dataset Co-Training summary Summary Further reading Chapter 4: Advanced Semi-Supervised Classification Contrastive Pessimistic Likelihood Estimation CPLE Theory Example of contrastive pessimistic likelihood estimation CPLE Summary Semi-supervised Support Vector Machines (S3VM) S3VM Theory Example of S3VM S3VM Summary Transductive Support Vector Machines (TSVM) TSVM Theory Example of TSVM Analysis of different TSVM configurations TSVM Summary Summary Further reading Chapter 5: Graph-Based Semi-Supervised Learning Label propagation Example of label propagation Label propagation in scikit-learn Label spreading Example of label spreading Increasing the smoothness with Laplacian regularization Label propagation based on Markov random walks Example of label propagation based on Markov random walks Manifold learning Isomap Example of Isomap Locally linear embedding Example of LLE Laplacian Spectral Embedding Example of Laplacian Spectral Embedding t-SNE Example of t-distributed stochastic neighbor embedding Summary Further reading Chapter 6: Clustering and Unsupervised Models K-nearest neighbors K-d trees Ball trees Fitting a KNN model Example of KNN with scikit-learn K-means K-means++ Example of K-means with scikit-learn Evaluation metrics Homogeneity score Completeness score Adjusted Rand index Silhouette score Summary Further reading Chapter 7: Advanced Clustering and Unsupervised Models Fuzzy C-means Example of Fuzzy C-means with SciKit-Fuzzy Spectral clustering Example of spectral clustering with scikit-learn DBSCAN Example of DBSCAN with scikit-learn The Calinski-Harabasz score The Davies-Bouldin score Analysis of DBSCAN results Summary Further reading Chapter 8: Clustering and Unsupervised Models for Marketing Biclustering Example of Spectral Biclustering with Scikit-Learn Introduction to Market Basket Analysis with the Apriori Algorithm Example of Apriori in Python Summary Further reading Chapter 9: Generalized Linear Models and Regression GLMs Least Squares Estimation Bias and Variance of Least Squares Estimators Example of Linear regression with Python Computing Linear regression Confidence Intervals with Statsmodels Increasing the robustness to outliers with Huber loss Other regression techniques Ridge Regression Example of Ridge Regression with scikit-learn Risk modeling with Lasso and Logistic Regression Example of Risk modeling with Lasso and Logistic Regression Polynomial Regression Examples of Polynomial Regressions Isotonic Regression Example of Isotonic Regression Summary Further reading Chapter 10: Introduction to Time-Series Analysis Time-series Smoothing Introduction to linear models for time-series Autocorrelation AR, MA, and ARMA processes Modeling non-stationary trend models with ARIMA Summary Further reading Chapter 11: Bayesian Networks and Hidden Markov Models Conditional probabilities and Bayes\' theorem Conjugate priors Bayesian networks Sampling from a Bayesian network Direct sampling A gentle introduction to Markov Chains Gibbs sampling The Metropolis-Hastings algorithm Sampling using PyMC3 Running the Sampling Process Sampling using PyStan Hidden Markov Models The Forward-Backward algorithm Forward phase Backward phase HMM parameter estimation The Viterbi algorithm Finding the most likely hidden state sequence using the Viterbi algorithm and hmmlearn Summary Further reading Chapter 12: The EM Algorithm MLE and MAP Learning EM Algorithm Convex functions and the Jensen\'s inequality Application of the Jensen\'s inequality to the EM algorithm An example of parameter estimation Gaussian Mixture Example of Gaussian Mixture with scikit-learn Determining the optimal number of components using AIC and BIC Automatic component selection using Bayesian Gaussian Mixture Summary Further reading Chapter 13: Component Analysis and Dimensionality Reduction Factor Analysis Linear relation analysis Example of Factor Analysis with scikit-learn Principal Component Analysis Component importance evaluation Example of PCA with scikit-learn Kernel PCA Sparse PCA Independent Component Analysis Example of FastICA with scikit-learn Addendum to Hidden Markov Models Summary Further reading Chapter 14: Hebbian Learning Hebb\'s rule Analysis of the Covariance Rule Example of application of the covariance rule Weight vector stabilization and Oja\'s rule Sanger\'s network Example of Sanger\'s network Rubner-Tavan\'s network Example of Rubner-Tavan\'s Network Self-organizing maps Kohonen Maps Example of SOM Summary Further reading Chapter 15: Fundamentals of Ensemble Learning Ensemble learning fundamentals Random forests Random forest fundamentals Why use Decision Trees? Random forests and the bias-variance trade-off Example of random forest with scikit-learn Feature importance AdaBoost AdaBoost.SAMME AdaBoost.SAMME.R AdaBoost.R2 Example of AdaBoost with scikit-learn Summary Further reading Chapter 16: Advanced Boosting Algorithms Gradient boosting Loss functions for gradient boosting Example of gradient tree boosting with scikit-learn Example of gradient boosting with XGBoost Evaluating the predictive power of the features Ensembles of voting classifiers Example of voting classifiers with scikit-learn Ensemble learning as model selection Summary Further reading Chapter 17: Modeling Neural Networks The basic artificial neuron The perceptron Example of a Perceptron with scikit-learn Multilayer Perceptrons (MLPs) Activation functions Sigmoid and Hyperbolic Tangent Rectifier activation functions Softmax The back-propagation algorithm Stochastic gradient descent (SGD) Weight initialization Example of MLP with TensorFlow and Keras Summary Further reading Chapter 18: Optimizing Neural Networks Optimization algorithms Gradient perturbation Momentum and Nesterov momentum SGD with Momentum in TensorFlow and Keras RMSProp RMSProp in TensorFlow and Keras Adam Adam in TensorFlow and Keras AdaGrad AdaGrad with TensorFlow and Keras AdaDelta AdaDelta in TensorFlow and Keras Regularization and Dropout Regularization Regularization in TensorFlow and Keras Dropout Dropout with TensorFlow and Keras Batch normalization Example of batch normalization with TensorFlow and Keras Summary Further reading Chapter 19: Deep Convolutional Networks Deep convolutional networks Convolutional operators Bidimensional discrete convolutions Strides and Padding Atrous convolution Separable convolution Transpose convolution Pooling layers Other helpful layers Example of a deep convolutional network with TensorFlow and Keras Example of a deep convolutional network with TensorFlow/Keras and data augmentation Summary Further reading Chapter 20: Recurrent Neural Networks Recurrent networks Backpropagation through time Limitations of BPTT Long Short-Term Memory (LSTM) Gated Recurrent Unit (GRU) Example of an LSTM with TensorFlow and Keras Transfer learning Summary Further reading Chapter 21: Autoencoders Autoencoders Example of a deep convolutional autoencoder with TensorFlow Denoising autoencoders Example of a denoising autoencoder with TensorFlow Sparse autoencoders Adding sparseness to the Fashion MNIST deep convolutional autoencoder Variational autoencoders Example of a VAE with TensorFlow Summary Further reading Chapter 22: Introduction to Generative Adversarial Networks Adversarial training Deep Convolutional GANs Example of DCGAN with TensorFlow Mode collapse Wasserstein GAN Example of WGAN with TensorFlow Summary Further reading Chapter 23: Deep Belief Networks Introduction to Markov random fields Restricted Boltzmann Machines Contrastive Divergence Deep Belief Networks Example of an unsupervised DBN in Python Example of a supervised DBN in Python Summary Further reading Introduction to Reinforcement Chapter 24: Learning Fundamental concepts of RL The Markov Decision Process Environment Rewards A checkerboard environment in Python Policy Policy iteration Policy iteration in the checkerboard environment Value iteration Value iteration in the checkerboard environment The TD(0) algorithm TD(0) in the checkerboard environment Summary Further reading Chapter 25: Advanced Policy Estimation Algorithms TD() algorithm TD() in a more complex checkerboard environment Actor-Critic TD(0) in the checkerboard environment SARSA algorithm SARSA in the checkerboard environment Q-learning Q-learning in the checkerboard environment Q-learning modeling the policy with a neural network Direct policy search through policy gradient Example of policy gradient with OpenAI Gym Cartpole Summary Further reading Other Books You May Enjoy Index