دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Krishnendu Kar
سری:
ISBN (شابک) : 1838827064, 9781838827069
ناشر: Packt Publishing
سال نشر: 2020
تعداد صفحات: 0
زبان: English
فرمت فایل : ZIP (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Mastering Computer Vision with TensorFlow 2.x: Build advanced computer vision applications using machine learning and deep learning techniques. Code به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تسلط بر بینایی کامپیوتر با TensorFlow 2.x: ساخت برنامه های کاربردی بینایی کامپیوتری پیشرفته با استفاده از تکنیک های یادگیری ماشین و یادگیری عمیق. کد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استفاده از معماری شبکه های عصبی برای ساخت برنامه های کاربردی بینایی کامپیوتری پیشرفته با استفاده از زبان برنامه نویسی پایتون
بینایی کامپیوتری به ماشینها اجازه میدهد تا درک در سطح انسانی برای تجسم، پردازش و تجزیه و تحلیل به دست آورند. تصاویر و فیلم ها این کتاب بر روی استفاده از TensorFlow تمرکز دارد تا به شما کمک کند وظایف بینایی کامپیوتری پیشرفته مانند اکتساب تصویر، پردازش و تجزیه و تحلیل را بیاموزید. شما با اصول کلیدی بینایی کامپیوتر و یادگیری عمیق برای ایجاد یک پایه محکم، قبل از پوشش معماری شبکه های عصبی و درک نحوه کار آنها به جای استفاده از آنها به عنوان یک جعبه سیاه، شروع خواهید کرد. در مرحله بعد، معماری هایی مانند VGG، ResNet، Inception، R-CNN، SSD، YOLO و MobileNet را بررسی خواهید کرد. با پیشرفت، یاد خواهید گرفت که از روش های جستجوی بصری با استفاده از یادگیری انتقال استفاده کنید. همچنین مفاهیم پیشرفته بینایی کامپیوتری مانند تقسیم بندی معنایی، نقاشی درون تصویر با GAN، ردیابی شی، تقسیم بندی ویدئو، و تشخیص عمل را پوشش خواهید داد. بعداً، این کتاب بر چگونگی استفاده از یادگیری ماشینی و مفاهیم یادگیری عمیق برای انجام کارهایی مانند تشخیص لبه و تشخیص چهره تمرکز دارد. سپس خواهید فهمید که چگونه می توانید مدل های شبکه عصبی قدرتمند را در رایانه شخصی خود و در پلتفرم های مختلف ابری ایجاد کنید. در نهایت، روشهای بهینهسازی مدل را برای استقرار مدلها در دستگاههای لبه برای استنتاج بلادرنگ یاد خواهید گرفت. در پایان این کتاب، شما درک کاملی از بینایی کامپیوتر خواهید داشت و میتوانید با اطمینان مدلهایی را برای خودکارسازی وظایف ایجاد کنید.
این کتاب برای متخصصان بینایی کامپیوتر، پردازش تصویر است. متخصصان، مهندسان یادگیری ماشین و توسعه دهندگان هوش مصنوعی که دانشی در مورد یادگیری ماشین و یادگیری عمیق دارند و می خواهند برنامه های بینایی کامپیوتری در سطح متخصص بسازند. علاوه بر آشنایی با TensorFlow، برای شروع کار با این کتاب به دانش پایتون نیز نیاز است.
Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language
Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks.
This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Section 1: Introduction to Computer Vision and Neural Networks Chapter 1: Computer Vision and TensorFlow Fundamentals Technical requirements Detecting edges using image hashing and filtering Using a Bayer filter for color pattern formation Creating an image vector Transforming an image Linear filtering—convolution with kernels Image smoothing The mean filter The median filter The Gaussian filter Image filtering with OpenCV Image gradient Image sharpening Mixing the Gaussian and Laplacian operations Detecting edges in an image The Sobel edge detector The Canny edge detector Extracting features from an image Image matching using OpenCV Object detection using Contours and the HOG detector Contour detection Detecting a bounding box The HOG detector Limitations of the contour detection method An overview of TensorFlow, its ecosystem, and installation TensorFlow versus PyTorch TensorFlow Installation Summary Chapter 2: Content Recognition Using Local Binary Patterns Processing images using LBP Generating an LBP pattern Understanding the LBP histogram Histogram comparison methods The computational cost of LBP Applying LBP to texture recognition Matching face color with foundation color – LBP and its limitations Matching face color with foundation color – color matching technique Summary Chapter 3: Facial Detection Using OpenCV and CNN Applying Viola-Jones AdaBoost learning and the Haar cascade classifier for face recognition Selecting Haar-like features Creating an integral image Running AdaBoost training Attentional cascade classifiers Training the cascade detector Predicting facial key points using a deep neural network Preparing the dataset for key-point detection Processing key-point data Preprocessing before being input into the Keras–Python code Preprocessing within the Keras–Python code Defining the model architecture Training the model to make key point predictions Predicting facial expressions using a CNN Overview of 3D face detection Overview of hardware design for 3D reconstruction Overview of 3D reconstruction and tracking Overview of parametric tracking Summary Chapter 4: Deep Learning on Images Understanding CNNs and their parameters Convolution Convolution over volume – 3 x 3 filter Convolution over volume – 1 x 1 filter Pooling Padding Stride Activation Fully connected layers Regularization Dropout Internal covariance shift and batch normalization Softmax Optimizing CNN parameters Baseline case Iteration 1 – CNN parameter adjustment Iteration 2 – CNN parameter adjustment Iteration 3 – CNN parameter adjustment Iteration 4 – CNN parameter adjustment Visualizing the layers of a neural network Building a custom image classifier model and visualizing its layers Neural network input and parameters Input image Defining the train and validation generators Developing the model Compiling and training the model Inputting a test image and converting it into a tensor Visualizing the first layer of activation Visualizing multiple layers of activation Training an existing advanced image classifier model and visualizing its layers Summary Section 2: Advanced Concepts of Computer Vision with TensorFlow Chapter 5: Neural Network Architecture and Models Overview of AlexNet Overview of VGG16 Overview of Inception GoogLeNet detection Overview of ResNet Overview of R-CNN Image segmentation Clustering-based segmentation Graph-based segmentation Selective search Region proposal Feature extraction Classification of the image Bounding box regression Overview of Fast R-CNN Overview of Faster R-CNN Overview of GANs Overview of GNNs Spectral GNN Overview of Reinforcement Learning Overview of Transfer Learning Summary Chapter 6: Visual Search Using Transfer Learning Coding deep learning models using TensorFlow Downloading weights Decoding predictions Importing other common features Constructing a model Inputting images from a directory Loop function for importing multiple images and processing using TensorFlow Keras Developing a transfer learning model using TensorFlow Analyzing and storing data Importing TensorFlow libraries Setting up model parameters Building an input data pipeline Training data generator Validation data generator Constructing the final model using transfer learning Saving a model with checkpoints Plotting training history Understanding the architecture and applications of visual search The architecture of visual search Visual search code and explanation Predicting the class of an uploaded image Predicting the class of all images Working with a visual search input pipeline using tf.data Summary Chapter 7: Object Detection Using YOLO An overview of YOLO The concept of IOU How does YOLO detect objects so fast? The YOLO v3 neural network architecture A comparison of YOLO and Faster R-CNN An introduction to Darknet for object detection Detecting objects using Darknet Detecting objects using Tiny Darknet Real-time prediction using Darknet YOLO versus YOLO v2 versus YOLO v3 When to train a model? Training your own image set with YOLO v3 to develop a custom model Preparing images Generating annotation files Converting .xml files to .txt files Creating a combined train.txt and test.txt file Creating a list of class name files Creating a YOLO .data file Adjusting the YOLO configuration file Enabling the GPU for training Start training An overview of the Feature Pyramid Network and RetinaNet Summary Chapter 8: Semantic Segmentation and Neural Style Transfer Overview of TensorFlow DeepLab for semantic segmentation Spatial Pyramid Pooling Atrous convolution Encoder-decoder network Encoder module Decoder module Semantic segmentation in DeepLab – example Google Colab, Google Cloud TPU, and TensorFlow Artificial image generation using DCGANs Generator Discriminator Training Image inpainting using DCGAN TensorFlow DCGAN – example Image inpainting using OpenCV Understanding neural style transfer Summary Section 3: Advanced Implementation of Computer Vision with TensorFlow Chapter 9: Action Recognition Using Multitask Deep Learning Human pose estimation – OpenPose Theory behind OpenPose Understanding the OpenPose code Human pose estimation – stacked hourglass model Understanding the hourglass model Coding an hourglass model argparse block Training an hourglass network Creating the hourglass network Front module Left half-block Connect left to right Right half-block Head block Hourglass training Human pose estimation – PoseNet Top-down approach Bottom-up approach PoseNet implementation Applying human poses for gesture recognition Action recognition using various methods Recognizing actions based on an accelerometer Combining video-based actions with pose estimation Action recognition using the 4D method Summary Chapter 10: Object Detection Using R-CNN, SSD, and R-FCN An overview of SSD An overview of R-FCN An overview of the TensorFlow object detection API Detecting objects using TensorFlow on Google Cloud Detecting objects using TensorFlow Hub Training a custom object detector using TensorFlow and Google Colab Collecting and formatting images as .jpg files Annotating images to create a .xml file Separating the file by train and test folders Configuring parameters and installing the required packages Creating TensorFlow records Preparing the model and configuring the training pipeline Monitoring training progress using TensorBoard TensorBoard running on a local machine TensorBoard running on Google Colab Training the model Running an inference test Caution when using the neural network model An overview of Mask R-CNN and a Google Colab demonstration Developing an object tracker model to complement the object detector Centroid-based tracking SORT tracking DeepSORT tracking The OpenCV tracking method Siamese network-based tracking SiamMask-based tracking Summary Section 4: TensorFlow Implementation at the Edge and on the Cloud Chapter 11: Deep Learning on Edge Devices with CPU/GPU Optimization Overview of deep learning on edge devices Techniques used for GPU/CPU optimization Overview of MobileNet Image processing with a Raspberry Pi Raspberry Pi hardware setup Raspberry Pi camera software setup OpenCV installation in Raspberry Pi OpenVINO installation in Raspberry Pi Installing the OpenVINO toolkit components Setting up the environmental variable Adding a USB rule Running inference using Python code Advanced inference Face detection, pedestrian detection, and vehicle detection Landmark models Models for action recognition License plate, gaze, and person detection Model conversion and inference using OpenVINO Running inference in a Terminal using ncappzoo Converting the pre-trained model for inference Converting from a TensorFlow model developed using Keras Converting a TensorFlow model developed using the TensorFlow Object Detection API Summary of the OpenVINO Model inference process Application of TensorFlow Lite Converting a TensorFlow model into tflite format Python API TensorFlow Object Detection API – tflite_convert TensorFlow Object Detection API – toco Model optimization Object detection on Android phones using TensorFlow Lite Object detection on Raspberry Pi using TensorFlow Lite Image classification Object detection Object detection on iPhone using TensorFlow Lite and Create ML TensorFlow Lite conversion model for iPhone Core ML Converting a TensorFlow model into Core ML format A summary of various annotation methods Outsource labeling work to a third party Automated or semi-automated labeling Summary Chapter 12: Cloud Computing Platform for Computer Vision Training an object detector in GCP Creating a project in GCP The GCP setup The Google Cloud Storage bucket setup Setting up a bucket using the GCP API Setting up a bucket using Ubuntu Terminal Setting up the Google Cloud SDK Linking your terminal to the Google Cloud project and bucket Installing the TensorFlow object detection API Preparing the dataset TFRecord and labeling map data Data preparation Data upload The model.ckpt files The model config file Training in the cloud Viewing the model output in TensorBoard The model output and conversion into a frozen graph Executing export tflite graph.py from Google Colab Training an object detector in the AWS SageMaker cloud platform Setting up an AWS account, billing, and limits Converting a .xml file to JSON format Uploading data to the S3 bucket Creating a notebook instance and beginning training Fixing some common failures during training Training an object detector in the Microsoft Azure cloud platform Creating an Azure account and setting up Custom Vision Uploading training images and tagging them Training at scale and packaging Application packaging The general idea behind cloud-based visual search Analyzing images and search mechanisms in various cloud platforms Visual search using GCP Visual search using AWS Visual search using Azure Summary Other Books You May Enjoy Index