دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نويسي ویرایش: نویسندگان: Arun Kumar سری: ناشر: سال نشر: تعداد صفحات: 238 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Master Data Science and Data Analysis with Pandas به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کارشناسی ارشد علم داده و تجزیه و تحلیل داده ها با پانداها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پانداها به یک ابزار مهم و ضروری برای تجزیه و تحلیل داده ها تبدیل شده است. این کتاب سناریوهای مختلفی را پوشش میدهد که در دادههای زندگی واقعی رخ میدهد و بنابراین به خواننده کمک میکند تا مسائل را مستقیماً مرتبط کند و راهحل را اعمال کند. این کتاب به گونه ای طراحی شده است که همه به راحتی می توانند مفاهیم را درک کنند و از طریق آن بگذرند. این کتاب هم برای مبتدیان و هم برای افراد با تجربه ایجاد شده است زیرا مبتدیان می توانند این فناوری را از ابتدا یاد بگیرند و افراد با تجربه می توانند مفاهیم خود را بیان کنند و می توانند مسائل خود را به هم مرتبط کنند و مفهوم را عمیقاً درک کنند.
Pandas has became an important and a must tool for data analysis. This book covers various scenarios that occurs in real life data and thus helps reader to relate the issues directly and apply the solution. The book has been developed in such a way that everyone can easily understand and run through the concepts. This book has been created for both beginners and experienced ones as the beginners can learn the technology from scratch and experienced ones can brush their concepts and can relate their issues and understand the concept in depth.
Table Of content 1Introduction 2Advantages 2.1 Speed 2.2 Short code: 2.3 Saves time: 2.4 Easy: 2.5 Versatile: 2.6 Efficiency: 2.7 Customizable: 2.8 Supports multiple formats for I/O: 2.9 Python support: 3Installation 3.1 Install Pandas 3.1.1Installing with Anaconda 3.1.2Installing with PyPI 3.2Install Jupyter Notebook 4Creating DataFrames 4.1Creating DataFrame using dictionary data 4.2Creating DataFrame using list data 4.2.1Creating single column 4.2.2Creating multiple columns 4.3Adding custom column name 4.4creating DataFrame from list of dictionaries 4.5creating DataFrame from other files 4.6Creating blank DataFrame 5Basics of DataFrames 5.1Read data 5.2Shape of the DataFrame 5.3Top ‘n’ rows 5.4Last ‘n’ rows 5.5Range of entries 5.6Accessing the columns 5.7Accessing ‘n’ columns 5.8Type of column 5.9Basic operations on column 5.9.1maximum 5.9.2minimum 5.9.3mean 5.9.4standard deviation 5.10Describe the DataFrame 5.11Conditional operation on columns 5.12accessing row with loc and iloc 5.13Set index 6Reading and writing files 6.1Reading CSV 6.1.1Reading 6.1.2Removing header 6.1.3Adding custom header 6.1.4Reading specific rows 6.1.5Reading the data from specific row 6.1.6Cleaning NA data 6.1.7Reference 6.2Writing to CSV 6.2.1Avoiding index 6.2.2Writing only specific columns 6.2.3Avoid writing headers 6.2.4reference 6.3Read Excel 6.3.1Reading sheets 6.3.2Passing function to columns 6.3.3Some basic common functions in read_excel and read_csv are: 6.3.4Reference 6.4Writing excels 6.4.1Writing to a custom sheet name 6.4.2Avoid index 6.4.3Avoid headers 6.4.4write at a particular row and column 6.4.5Writing multiple sheets to the same excel file 6.4.6reference 6.5Reading and writing txt file 6.5.1Reading txt 6.5.2Writing to txt 6.6Reference 6.6.1https://Pandas.pydata.org/Pandas-docs/stable/user_guide/io.html 7working with missing data 7.1Managing timestamp 7.2Set index 7.3Check if data is “na” or “notna” 7.4Check if a data has missing datetime 7.5Inserting missing date 7.6Filling the missing data 7.6.1Filling a common value to all missing data 7.6.2Adding missing data to individual columns 7.6.3Forward fill (row) 7.6.4Backward fill (row) 7.6.5Forward fill (column) 7.6.6Limiting the forward/backward fill 7.6.7Filling with Pandas objects 7.6.8Filling for specific range of columns 7.7Interpolate missing value 7.7.1Linear interpolate 7.7.2Time interpolate 7.7.3Other methods of interpolation 7.7.4Limiting the interpolation 7.7.5Interpolation direction 7.7.6Limit area of interpolation 7.8Drop the missing value 7.8.1Drop row with at least 1 missing value 7.8.2Drop row with all missing values 7.8.3Set threshold to drop 7.9Replace the data 7.9.1Replace a column with new column 7.9.2Replace with mapping dictionary 7.9.3replacing value with NaN 7.9.4Replace multiple values with NaN 7.9.5Replacing data as per columns 7.9.6Regex and replace 7.9.7Regex on specific columns 8Groupby 8.1Creating group object 8.2Simple operations with group 8.2.1First 8.2.2Last 8.2.3Max 8.2.4Min 8.2.5Mean 8.3Working of groupby 8.4Iterate through groups 8.4.1Group details 8.4.2Iterate for groups 8.5Get a specific group 8.6Detailed view of the groups data 8.7Group by sorting 8.7.1Sorted data (default) 8.7.2Unsorted data 8.8Various functions associated with groupby object 8.9Length 8.9.1Len of an object 8.9.2Length of each group 8.10Groupby with multi-index 8.10.1Grouping on level numbers 8.10.2grouping on level names 8.11Grouping DataFrame with index level and columns 8.12Aggregation 8.12.1Applying multiple aggregate functions at once 8.12.2Multiple aggregate function to selected columns 8.12.3Renaming the column names for aggregate functions 8.12.4Named aggregation 8.12.5Custom agg function on various columns 8.13Transformation 8.13.1Custom functions in transformation 8.13.2Filling missing data 8.14Window operations 8.14.1Rolling 8.14.2Expanding 8.15Filtration 8.16Instance methods 8.16.1Sum, mean, max, min etc 8.16.2Fillna 8.16.3Fetching nth row 8.17Apply 8.18Plotting 8.18.1Lineplot 8.18.2Boxplot 9Concatenation 9.1Concatenate series 9.2Concatenate DataFrames 9.3Managing duplicate index 9.4Adding keys to DataFrames 9.5Use of keys 9.6Adding DataFrame as a new column 9.6.1Removing unwanted columns in column concatenation 9.6.2Series in columns 9.7Rearranging the order of column 9.8Join DataFrame and series 9.9Concatenating multiple DataFrames /series 10Merge 10.1Merging DataFrames 10.2Merging different values of “ON” (joining) column 10.2.1Merging with Inner join 10.2.2Merging with outer join 10.2.3Merging with left join 10.2.4Merging with right join 10.3Knowing the source DataFrame after merge 10.4Merging DataFrames with same column names 10.5Other ways of joining 10.5.1Join 10.5.2Append 11Pivot 11.1Multilevel columns 11.2Data for selected value (column) 11.3Error from duplicate values 12Pivot table 12.1Aggregate function 12.1.1List of function to aggfunc 12.1.2Custom functions to individual columns 12.2Apply pivot_table() on desired columns 12.3Margins 12.3.1Naming the margin column 12.4Grouper 12.5Filling the missing value in pivot table 13Reshape DataFrame using melt 13.1Use of melt 13.2Melt for only one column 13.3Melt multiple columns 13.4Custom column name 13.4.1Custom variable name 13.4.2Custom value name 14Reshaping using stack and unstack 14.1Stack the DataFrame 14.2Stack custom level of column 14.3Stack on multiple levels of column 14.4Dropping missing values 14.5Unstack the stacked DataFrame 14.5.1Default unstack 14.5.2Converting other index levels to column 14.5.3Unstack multiple indexes 15Frequency distribution of DataFrame column 15.1Apply crosstab 15.2Get total of rows/columns 15.3Multilevel columns 15.4Multilevel indexes 15.5Custom name to rows/columns 15.6Normalize (percentage) of the frequency 15.7Analysis using custom function 16Drop unwanted rows/columns 16.1Delete row 16.1.1Delete rows of custom index level 16.1.2Delete multiple rows 16.2Drop column 16.2.1Delete multiple columns 16.2.2Delete multilevel columns 16.3Delete both rows & columns 17Remove duplicate values 17.1Remove duplicate 17.2Fetch custom occurrence of data 17.2.1First occurrence 17.2.2Last occurrence 17.2.3Remove all duplicates 17.3Ignore index 18Sort the data 18.1Sort columns 18.2Sorting multiple columns 18.3Sorting order 18.4Positioning missing value 19Working with date and time 19.1Creation, working and use of DatetimeIndex 19.1.1Converting date to timestamp and set as index 19.1.2Access data for particular year 19.1.3Access data for particular month 19.1.4Calculating average closing price for any month 19.1.5Access a date range 19.1.6Resampling the data 19.1.7Plotting the resampled data 19.1.8Quarterly frequency 19.2Working with date ranges 19.2.1Adding dates to the data 19.2.2Apply the above date range to our data 19.2.3Generate the missing data with missing dates 19.2.4Date range with periods 19.3Working with custom holidays 19.3.1Adding US holidays 19.3.2Creating custom calendar 19.3.3Observance rule 19.3.4Custom week days 19.3.5Custom holiday 19.4Working with date formats 19.4.1Converting to a common format 19.4.2Time conversion 19.4.3Dayfirst formats 19.4.4Remove custom delimiter in date 19.4.5Remove custom delimiter in time 19.4.6Handling errors in datetime 19.4.7Epoch time 19.5Working with periods 19.5.1Annual period 19.5.2Monthly period 19.5.3Daily period 19.5.4Hourly period 19.5.5Quarterly period 19.5.6Converting one frequency to another 19.5.7Arithmetic between two periods 19.6Period Index 19.6.1Getting given number of periods 19.6.2Period index to DataFrame 19.6.3Extract annual data 19.6.4Extract a range of periods data 19.6.5Convert periods to datetime index 19.6.6Convert DatetimeIndex to PeriodIndex 19.7Working with time zones 19.7.1Make naïve time to time zone aware 19.7.2Available timezones 19.7.3Convert on time zone to other 19.7.4Time zone in a date range 19.7.5Time zone with dateutil 19.8Data shifts in DataFrame 19.8.1Shifting the price down 19.8.2Shifting by multiple rows 19.8.3Reverse shifting 19.8.4Use of shift 19.8.5DatetimeIndex shift 19.8.6Reverse DatetimeIndex shift 20Database 20.1Working with MySQL 20.1.1Installations 20.1.2Create connection 20.1.3Read table data 20.1.4Fetching specific columns from table 20.1.5Execute a query 20.1.6Insert data to table 20.1.7Common function to read table and query 20.2Working with MongoDB 20.2.1Installations 20.2.2Create connection 20.2.3Get records 20.2.4Fetching specific columns 20.2.5Insert records 20.2.6Delete records 21About Author