دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Thiago Verano-Braga (editor)
سری:
ISBN (شابک) : 3031506235, 9783031506239
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 279
[273]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Mass Spectrometry-Based Approaches for Treating Human Diseases and Diagnostics (Advances in Experimental Medicine and Biology, 1443) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای مبتنی بر طیفسنجی جرمی برای درمان بیماریهای انسانی و تشخیص (پیشرفتها در پزشکی تجربی و زیستشناسی، 1443) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیشرفتهای تکنولوژیکی در زمینه رویکردهای مبتنی بر طیفسنجی جرمی برای درمان بیماریهای انسانی و تشخیص و همچنین کاربرد چنین رویکردهایی برای مطالعه عمیق بیماریهای انسانی، کشف و اعتبارسنجی بیومارکرها و ارائه بینشهای مکانیکی از پتانسیل ارائه میکند. درمان های جدید این یک کتاب ایده آل برای دانشجویان، تکنسین ها، محققان و پزشکان پزشکی است که در زمینه طیف سنجی جرمی و پروتئومیکس کار می کنند.
This book presents the technological advances in the field of mass spectrometry-based approaches for treating human diseases and diagnostics as well as the application of such approaches to study, in depth, human diseases, biomarkers discovery and validation, and to provide mechanistic insights of potential new therapeutics. This is an ideal book for students, technicians, researchers, and medical doctors that work in the field of mass spectrometry and proteomics
Preface Contents Chapter 1: Isolation of Extracellular Vesicles Using Titanium Dioxide Microspheres 1.1 Introduction 1.1.1 Extracellular Vesicle Biosynthesis and Biological Functions in Diseases 1.1.2 Omics Science Approaches for Extracellular Vesicle Characterization 1.2 Material and Methods 1.2.1 Plasma Samples 1.2.2 Enrichment of Plasma EVs Using TiO2 Microspheres 1.2.3 EV Morphological Characterization by Transmission Electron Microscopy and Nanoparticle Tracking Analysis (NTA) 1.2.3.1 For NTA Analysis 1.2.3.2 For TEM Analysis 1.2.4 EV Plasma Proteome Identification Using MALDI-TOF MS and LC-MS/MS 1.2.4.1 For the MALDI-TOF MS Approach 1.2.4.2 For LC-MS/MS Analysis 1.2.5 Bioinformatics Analysis of Mass Spectrometry-Based Proteomics (LC-MS/MS) 1.3 Results of the EV Morphological Characterization and Proteome Identification 1.4 Conclusion References Chapter 2: Glycosort: A Computational Solution to Post-process Quantitative Large-Scale Intact Glycopeptide Analyses 2.1 Introduction 2.1.1 Glycosort: A Post-processing Tool for Large-Scale Quantitative Glycoproteomic Data 2.2 Data Processing 2.3 How to Use the Script 2.4 Conclusions References Chapter 3: Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19 3.1 Introduction 3.2 SARS-CoV-2: Understanding the Molecular Structure, the Mechanism of Viral Replication, and Pathogenesis 3.3 MS-Based Analytical Approaches Provide Details on SARS-CoV-2 Molecular Structure and Virus-Host Interactions 3.4 MS as a Major Tool for Understanding the Biological Properties of the Variants and Their Potential Impact on Public Health 3.5 MALDI-TOF Mass Spectrometry in the Identification of Post-translational Modifications in SARS-CoV-2 and Other Viruses 3.6 Mass Spectrometry-Based Approaches to Epitope Mapping: A Powerful Tool for Identifying the Specific Regions on a Protein That Are Recognized by the Immune System 3.7 Clinical Peptidomics by MALDI-TOF-MS: Diagnosis and Prognosis 3.7.1 Detection and Diagnosis 3.7.2 Prognosis Models for COVID-19 Outcomes 3.8 Optimization of Sample Preparation for Plasma Clinical Peptidomics by MALDI-TOF-MS 3.8.1 MALDIquant General R Script 3.8.2 Data Analysis with MALDIquant 3.9 Final Considerations References Chapter 4: Proteomics and Metabolomics in Congenital Zika Syndrome: A Review of Molecular Insights and Biomarker Discovery 4.1 Introduction 4.2 Zika Virus 4.2.1 Epidemiology, Transmission, and Pathology 4.2.2 ZIKV Composition 4.2.3 Viral Cycle 4.2.3.1 ZIKV Binding and Entry 4.2.3.2 ZIKV Translation, Replication, and Assembly 4.2.3.3 ZIKV Maturation and Secretion 4.2.4 ZIKV Post-translational Modifications in Viral Pathogenicity 4.2.5 Vertical Transmission 4.3 Congenital Zika Syndrome 4.3.1 Pathology and Diagnosis 4.3.2 Blood-Brain Barrier 4.3.3 In Vivo Models for CZS Studies 4.4 Proteomics and Metabolomics Studies Applied to Congenital Zika Syndrome 4.4.1 Mechanism for ZIKV Brain Infection and CZS Development 4.4.1.1 Affinity Purification Coupled with Mass Spectrometry (AP-MS) 4.4.1.2 Cross-Linking Coupled with Mass Spectrometry (XL-MS) 4.4.1.3 Quantitative Proteomics and Metabolomics 4.4.1.3.1 Proteomics Studies 4.4.1.3.2 Metabolomics Studies 4.4.2 PTMs Associated with ZIKV Brain Infection and CZS Development 4.4.3 Precision Medicine and CZS Biomarkers 4.4.3.1 Precision Medicine and Biomarker Concepts 4.4.3.2 Biomarkers and MS-Based Proteomics 4.4.3.3 CZS Biomarker Studies 4.5 Conclusions References Chapter 5: Mass Spectrometry Applications to Study Human Microbiome 5.1 Impact of Human Microbiome on Health State 5.2 Mass Spectrometry at a Glance 5.3 Approaches for Dissecting the Functional Contribution of the Gut Microbiome to Metabolic Disease 5.4 Mass Spectrometric Approaches Applied to Bacterial Identification 5.5 Mapping Human Microbiome Drug Metabolism 5.6 Conclusion and Future Perspectives References Chapter 6: Neuroproteomics: Unveiling the Molecular Insights of Psychiatric Disorders with a Focus on Anxiety Disorder and Depression 6.1 Introduction 6.2 Anxiety Disorders 6.2.1 Neurobiology 6.2.2 Pharmacological Therapy of Anxiety Disorders 6.3 Depression Disorders 6.3.1 Neurobiology 6.3.2 Pharmacological Therapy of Depressive Disorders 6.4 Depression-like and Anxiety-like Animal Models and Tests 6.4.1 Chronic Mild Stress 6.4.2 Social Defeat 6.4.3 Learned Helplessness 6.4.4 Neonatal Maternal Separation 6.4.5 Genetic Modification 6.5 Behavioral Tests for Validation in Animal Models 6.5.1 Open Field Test 6.5.2 Forced Swim Test 6.5.3 Light/Dark Box 6.5.4 Sucrose Preference Test 6.6 Omics Studies 6.6.1 Omics of the Chronic Mild Stress Model 6.6.2 Omics of the Social Defeat Model 6.6.3 Omics of the Learned Helplessness Model 6.6.4 Neonatal Maternal Separation Model 6.6.5 Omics in the Genetic Modification Model 6.6.6 Omics in Anxiety- and Depression-like Treatments 6.7 Conclusions References Chapter 7: Proteomic-Based Studies on Memory Formation in Normal and Neurodegenerative Disease-Affected Brains 7.1 Introduction 7.2 Memory 7.3 Proteomics and Memory 7.4 Proteomics and Neurodegenerative Disease 7.5 Alzheimer’s Disease 7.6 Parkinson’s Disease 7.7 Conclusions References Chapter 8: Cardioproteomics: Insights on Cardiovascular Diseases 8.1 Introduction 8.2 Atherosclerosis 8.2.1 Endothelial Dysfunction 8.2.2 Inflammation 8.2.3 Calcification 8.3 Coronary Artery Disease 8.3.1 Myocardial Infarction 8.4 Cardiomyopathy 8.4.1 Hypertrophic Cardiomyopathy 8.4.2 Dilated Cardiomyopathy 8.5 Conclusions References Chapter 9: Kidney Disease and Proteomics: A Recent Overview of a Useful Tool for Improving Early Diagnosis 9.1 Introduction 9.2 Diabetic Kidney Disease and Proteomics 9.3 IgA Nephropathy and Proteomics 9.4 Chronic Kidney Disease of Unknown Origin (CKDu) and Proteomics 9.5 Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Proteomics 9.6 Lupus Nephritis and Proteomics 9.7 Hypertensive Nephropathy and Proteomics 9.8 COVID-19-Associated AKI and Proteomics 9.9 Conclusions References Chapter 10: Multi-omics Investigations in Endocrine Systems and Their Clinical Implications 10.1 Proteomics in Diabetes Research 10.1.1 Proteomics and Type 1 Diabetes 10.1.2 Proteomics and Type 2 Diabetes 10.2 Hypothalamic-Pituitary-Thyroid Axis 10.2.1 The Use of Proteomic Approach in Studies of the HPT Axis 10.2.2 Thyroid Cancer and Biomarkers 10.3 Proteomics and the Reproductive System 10.3.1 Network Controlling Male and Female Reproductive Systems 10.3.2 Reproductive Tissue-Specific Proteome 10.3.3 Proteomic Approach Within Infertility 10.3.4 Proteomic Approach in Reproductive System Cancers 10.4 Renin-Angiotensin System and Proteomics 10.5 Omics and Circadian Rhythmicity 10.6 Conclusion References Chapter 11: Omics to Unveil Diabetes Mellitus Pathogenesis and Biomarkers: Focus on Proteomics, Lipidomics, and Metabolomics 11.1 Introduction 11.2 Omics in Diabetes Mellitus Diagnostics 11.2.1 Proteomics 11.2.2 Metabolomics 11.2.3 Lipidomics 11.3 Conclusions References Chapter 12: Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options 12.1 Introduction 12.2 Infectious Diseases 12.2.1 Diagnostics 12.2.2 Treatment 12.3 Cancer 12.3.1 Diagnosis 12.3.2 Treatment 12.4 Autoimmune Diseases 12.4.1 Diagnosis 12.4.2 Treatment 12.5 Neurodegenerative Diseases 12.6 Conclusions References Chapter 13: Applications of Proteomics in Probiotics Having Anticancer and Chemopreventive Properties 13.1 Proteomics for Probiotic Traits 13.2 Probiotics and Their Applications 13.3 Proteomics for Anticancer Probiotics 13.3.1 Proteomics for Anticancer Lactic Acid Bacteria 13.3.2 Proteomics for Lactococcus lactis NCDO 2118 13.3.3 Proteomics for Lactobacillus acidophilus 13.3.4 Proteomics for Lactobacillus fermentum NCDC 13.3.5 Proteomics for Surface-Exposed Proteins in Anticancer Probiotics 13.4 Proteomics for Chemopreventive Probiotics 13.5 Proteomics for Anti-inflammatory Probiotics 13.6 Proteomics for Probiotic Formulations and Quality Control 13.7 Conclusions References Chapter 14: Mass Spectrometry-Based Characterization of Protein Aggregates in Tissues and Biofluids 14.1 Introduction 14.2 Methodology 14.2.1 Isolation of Protein Aggregates 14.2.2 Sample Preparation for Mass Spectrometry Analysis 14.2.3 Mass Spectrometry Analysis 14.2.4 Database Search 14.2.5 Transmission Electron Microscopy (TEM) Analysis 14.2.6 Western Blotting 14.3 Results 14.3.1 Aggregates Isolated from Human Plasma Show a Diversity of Protein Functions 14.3.2 Neurodegeneration-Related Proteins and Exosomes Are Isolated in the Pellet Fraction of Human Plasma 14.3.3 Isolated Protein Aggregates from Mouse Brain Are Composed of a Variety of Proteins Associated with Neurodegenerative Diseases 14.4 Conclusions References Index