دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2023]
نویسندگان: Pallaval Veera Bramhachari (editor). Chanda Vikrant Berde (editor)
سری:
ISBN (شابک) : 9819967694, 9789819967698
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 349
[339]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Marine Bioactive Molecules for Biomedical and Pharmacotherapeutic Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مولکول های زیست فعال دریایی برای کاربردهای زیست پزشکی و دارویی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی تحقیقات پیشرفته در مورد کشف و کاربرد مولکول های زیست فعال دریایی برای اهداف زیست پزشکی و دارویی می پردازد. این کتاب با جستجوی زیستی میکروبیومهای اسفنج دریایی برای متابولیتهای فعال زیستی با استفاده از ابزارهای متاژنومیکس پیشرفته آغاز میشود. سپس رویکردهای استخراج متاژنوم برای کشف محصولات طبیعی میکروبی دریایی را بررسی می کند. استفاده از قارچ های مشتق شده از دریا به عنوان منبع متابولیت های ثانویه ضد سرطان نیز مورد بحث قرار گرفته است. سپس این کتاب به کاربردهای زیست پزشکی مواد زیستی مشتق شده از دریا، از جمله پلیمرهای زیستی دریایی در مهندسی بافت و پزشکی بازساختی می پردازد. داروسازی های مشتق شده از دریا و نانوساختارهای پلیمری برای درمان سرطان نیز مورد بررسی قرار می گیرند. در ادامه، این کتاب به استفاده از منابع میکروبی دریایی برای سنتز نانومواد فلزی، چشماندازها، توسعه فعلی و چالشهای موجود در نانوپزشکی میپردازد. این کتاب با کاوش در گنجینه پلیمرهای طبیعی برای مهندسی بافت در محیط های دریایی ادامه می یابد. همچنین در مورد پتانسیل تعدیل کننده ایمنی و درمانی آستاگزانتین مشتق شده از دریا، تحولات فعلی و چشم انداز بحث می کند. در نهایت، این کتاب با بررسی پیشرفت های اخیر در مواد مغذی مشتق شده از دریا و ترکیبات زیست فعال فیتوپلانکتون دریایی و کاربردهای آنها در پزشکی به پایان می رسد.
This book explores cutting-edge research on the discovery and application of marine bioactive molecules for biomedical and pharmacotherapeutic purposes. The book begins by delving into the bioprospection of marine sponge microbiomes for bioactive metabolites using advanced metagenomics tools. It then explores metagenome mining approaches for the discovery of marine microbial natural products. The use of marine-derived fungi as a source of anticancer secondary metabolites is also discussed. The book then turns to the biomedical applications of marine-derived biomaterials, including marine biopolymers in tissue engineering and regenerative medicine. Marine-derived pharmaceuticals and polymeric nanostructures for cancer treatment are also examined. Next, the book looks at the use of marine microbial sources for the synthesis of metallic nanomaterials, prospects, current development, and challenges in nanomedicine. The book continues by exploring the treasure trove of natural polymers for tissue engineering in the marine environment. It also discusses the immunomodulatory and therapeutic potential of marine-derived astaxanthin, current developments, and prospects. Finally, the book concludes by exploring the recent progress in marine-derived nutraceuticals and marine phytoplankton bioactive compounds and their applications in medicine.
Foreword Preface Acknowledgments About the Book Contents Editors and Contributors Abbreviations 1: New Vistas and Frontiers of Marine Bioactive Molecules in Biomedical and Pharmacotherapeutic Applications 1.1 Introduction 1.2 Marine Bioactive Natural Compounds 1.3 Bioprospection of Marine-Derived Bioactive Metabolites 1.4 Sustainable Exploitation of the Marine Environment 1.5 Marine Environment in Pharmacological and Biomedical Applications 1.5.1 Marine Bacteria 1.5.2 Marine Fungi 1.5.3 Macroalgae 1.5.4 Marine Collagen 1.5.5 Marine Peptides 1.6 Limitations on Bioactive Metabolite Research 1.7 The Way Forward 1.8 Future Perspective and Conclusions References 2: Bioprospection of Marine Sponge Microbiome for Bioactive Metabolites Employing Advanced Metagenomics Tools 2.1 Introduction 2.2 Marine Sponges 2.3 Marine Microbes Associated with Marine Sponges 2.4 Secondary Metabolites Produced by Sponge Microbiome 2.5 Culture-Dependent Methods 2.6 Culture-Independent Methods 2.6.1 The Methodology in Metagenomics Is as Follows 2.6.1.1 Extraction of eDNA 2.6.1.2 eDNA Digestion 2.6.1.3 Library Construction and Transfection in Host 2.6.1.4 Replication of DNA Inserts in Host 2.6.2 The Detection of Novel Natural Products: Based on the Sequence-Based Mining 2.6.2.1 Sequence-Based Screening/PCR or Probe-Based Screening 2.6.2.2 Function-Based Screening 2.6.3 Advantages of Functional Screening Method 2.6.4 Limitation of Functional Screening Method 2.7 Bioinformatics with Metagenomics 2.8 Conclusions References 3: Biomedical Applications of Marine Biopolymers in Tissue Engineering and Regenerative Medicine 3.1 Introduction 3.2 Marine Biopolymers in TERM 3.3 Tissue Engineering: Perspectives of Marine Biopolymers 3.3.1 Fucoidan 3.3.2 Carrageenan 3.3.3 Chitosan 3.3.4 Role of Alginate in Wound Healing 3.4 Conclusions References 4: Metagenome Mining Approaches for the Discovery of Marine Microbial Natural Products 4.1 Introduction 4.2 Marine Sources of Natural Products 4.2.1 Marine Archaea and Bacteria 4.2.2 Marine Fungi 4.2.3 Marine Microalgae 4.3 Metagenomics for Marine Natural Product Discovery 4.4 Metagenomics as a Strategy 4.4.1 Environmental DNA (eDNA) Extraction/Isolation 4.4.2 Metagenomic Techniques for Creating and Screening Libraries 4.4.2.1 Function-Based Metagenomic Screening 4.4.2.2 Sequence-Based Metagenomic Screening 4.4.2.3 High-Throughput Metagenomic Sequencing 4.5 Conclusion and Prospects References 5: Marine Derived Pharmaceuticals in Biomedical Research: Current Developments and Future Prospects 5.1 Introduction 5.2 History 5.3 Marine Pharmacology in India 5.4 Marine Drug Development 5.4.1 Biomedical Applications of Marine-Derived Pharmaceuticals 5.5 Marine Compounds as Cytostatic Drugs 5.5.1 Anticancer Bioactive Antibiotics Derived from Marine Sources 5.6 Marine Compounds as Antiviral Drugs 5.6.1 Drug and Gene Delivery 5.6.2 Future Perspectives and Conclusions References 6: Marine Polysaccharides: Prospects for Nanostructures Preparation and Their Exploitation in Cancer Therapy 6.1 Introduction 6.2 Marine Polysaccharides Structures 6.3 Nanoparticles Synthesis from Different Marine Polysaccharides 6.4 Nanostructures from Marine Polysaccharides and Anti-cancer Activity 6.4.1 Chitosan Nanoparticles 6.4.2 Alginate Nanoparticles 6.4.3 Fucoidan Nanoparticles 6.4.4 Hyaluronic Acid Nanoparticles 6.5 Conclusions References 7: Marine Microbial Cell Mediated Nanomaterials Synthesis: Prospectus, Current Development and Challenges 7.1 Introduction 7.2 Methods of Nanomaterial Synthesis 7.3 A Role of Biomolecules Obtained from Marine Microbes for Nanomaterials Synthesis 7.3.1 Marine Bacterial Biomolecules Source for Green NPs Synthesis 7.3.2 Marine Fungal Biomolecules Source for Green NPs Synthesis 7.3.3 Marine Algal Source for Green Nanoparticle Synthesis 7.4 Mode of Action of Metallic NPs 7.5 Biomedical Applications of Metallic NPs 7.5.1 Antimicrobial Activity of NPS 7.5.1.1 Antibacterial Activity of NPs 7.5.1.2 Antifungal Activity of NPs 7.5.2 Anticancer Activity of Metallic NPs 7.5.3 Use of NPs in Medical Imaging 7.5.4 Metallic NPs Based Biosensors 7.6 Challenges in Nanomedicines Preparation 7.7 Conclusions References 8: A Potent Drug l-Asparaginase from Marine Origins: A Comprehensive Review 8.1 Introduction 8.2 Marine Sources of l-Asparaginase 8.3 Bioprocess Techniques for Marine-Derived l-Asparaginase 8.3.1 Upstream Processing 8.3.1.1 Temperature 8.3.1.2 pH 8.3.1.3 Fermentation Medium 8.3.1.4 Carbon Source 8.3.1.5 Incubation Time 8.3.1.6 Agitation Rate 8.3.2 Fermentation Techniques 8.3.2.1 Submerged Fermentation 8.3.2.2 Solid-State Fermentation 8.3.3 Downstream Processing 8.3.3.1 Non-chromatographic Process Cell Disruption Techniques Ultrafiltration and Centrifugation Protein Precipitation Liquid-Liquid Extraction 8.3.3.2 Chromatographic Process Ion Exchange Chromatography Gel Filtration Chromatography 8.3.4 Purity Analysis of l-Asparaginase 8.3.4.1 SDS-PAGE Analysis 8.3.4.2 UPLC Analysis 8.3.4.3 DLS-ZP Analysis 8.3.4.4 DSC-TGA 8.4 Conclusion References 9: Marine Environment: A Treasure Trove of Natural Polymers for Tissue Engineering 9.1 Introduction 9.2 Marine-Derived Polysaccharide-Based Polymers 9.2.1 Agarose 9.2.2 Alginate 9.2.3 Cellulose and Ulvans 9.2.4 Chitin and Chitosan 9.2.5 Chondroitin Sulfate 9.2.6 Hyaluronic Acid 9.2.7 Carrageenan 9.3 Marine-Derived Protein-Based Polymers 9.3.1 Collagen 9.3.2 Gelatin 9.4 Other Marine-Derived Biopolymers 9.4.1 Polyhydroxyalkanoates 9.4.2 Biosilica or Bioglass 9.5 Conclusion References 10: Exploration of Bioactive Functional Molecules from Marine Algae: Challenges and Applications in Nutraceuticals 10.1 Introduction 10.2 Marine Algae-Derived Carbohydrates and Polysaccharides 10.3 Marine Algae Is a Source of Essential Fatty Acids 10.4 Marine Algae-Derived Essential Proteins and Pigments 10.5 Marine Algae-Derived Phenolic Compounds and Minerals 10.6 Marine Algae Are Sources of Vitamins 10.7 Conclusion References 11: Properties of Violacein: A Promising Natural Pharmaceutical Secondary Metabolite from Marine Environment with Emphasis on ... 11.1 Introduction 11.2 Characteristics of Violacein 11.3 Violacein Production 11.3.1 Genes Involved in Violacein Production 11.3.2 Violacein Biosynthetic Pathway 11.3.3 Regulation of Violacein Production 11.4 Bacteria Producing Violacein 11.5 Factors Affecting Violacein Production 11.5.1 Carbon Source 11.5.2 pH 11.5.3 Temperature 11.5.4 Rate of Agitation 11.5.5 Incubation Time 11.6 Pharmaceutical Properties of Violacein 11.6.1 Antibacterial 11.6.2 Antiviral 11.6.3 Antifungal 11.6.4 Antiparasitic 11.6.5 Immunomodulatory and Immunostimulatory 11.6.6 Antioxidant 11.7 Anticancer Properties of Violacein 11.7.1 Development of Cancer 11.7.1.1 Cell Cycle Regulation 11.7.1.2 Tumor Suppressor Proteins 11.7.2 Mechanism of Violacein Action 11.7.2.1 By Inducing Apoptosis in Cancerous Cells 11.7.2.2 By Inhibiting Proliferation of Tumors 11.7.2.3 By Caspase Activity 11.7.2.4 By Exhibiting Cytotoxic Effects 11.7.2.5 By Displaying Anti-inflammatory Effect 11.7.2.6 By Persuading Stress 11.8 Conclusion References 12: Exploitation of Marine-Derived Multifunctional Biomaterials in Biomedical Engineering and Drug Delivery 12.1 Introduction 12.2 List of Marine Biomaterials 12.2.1 Alginate 12.2.2 Carrageenan 12.2.3 Chitosan 12.2.4 Agar 12.2.5 Collagen 12.2.6 Hyaluronic Acid (HA) 12.2.7 Ulvan 12.2.8 Fucoidan 12.2.9 Fibrin and Fibrinogen 12.2.10 Keratin 12.2.11 Carboxymethyl Cellulose 12.3 Applications of Marine Biomaterials 12.3.1 Drug Delivery Systems 12.3.1.1 Liposome-Based Drug Delivery Marine Biomaterials in Tissue Engineering 12.3.1.2 3D Printing 12.3.1.3 Dentistry 12.3.1.4 Cartilage Tissue Engineering 12.3.1.5 Wound Healing 12.3.2 Diabetes 12.3.3 Bioactive Properties 12.4 Conclusion References 13: Marine Phytoplankton: Bioactive Compounds and Their Applications in Medicine 13.1 Introduction 13.2 Nutraceuticals 13.2.1 Pigments 13.2.2 Fatty Acids and Lipids 13.2.3 Vitamins and Minerals 13.2.4 Proteins 13.2.5 Polysaccharides 13.2.5.1 Fucoidan 13.2.5.2 Alginic Acid 13.2.5.3 Laminarin 13.2.6 Phlorotannins 13.2.7 Alkaloids 13.3 Pharmaceuticals 13.3.1 Anticancer Activity 13.3.2 Antiviral Activity 13.3.3 Antibacterial Activity 13.3.4 Antiprotozoal Activity 13.3.5 Wound Dressing Materials 13.4 Cosmeceuticals 13.4.1 Applications in Antiaging Products 13.4.2 Applications in Photo-protectants 13.5 Aquaculture 13.6 Conclusion References 14: Neuroactive Peptides and Neuroprotective Molecules from Marine Sponges and Associated Bacteria: An Untapped Resource for S... 14.1 Introduction 14.2 Sponge-Derived AChE Inhibitors 14.3 Sponge-Derived Glycogen Synthase Kinase 3 and Cyclin-Dependent Kinase Inhibitors 14.4 Role of Peptides on Voltage-Gated Ion Channels 14.5 Beta-Amyloid Cleaving Enzyme (BACE)-1 Inhibitors Obtained from Marine Sponges 14.6 Serotonin, Glutamate, Nitric Oxide, and Gamma-Aminobutyric Acid (GABA)nergic Inhibitors Isolated from Marine Sponges 14.7 N-Methyl-d-Aspartate Receptors and Other Secondary Metabolites Inhibiting Neural Outgrowth 14.8 Neuroactive Peptides Isolated from Marine Sponge-Associated Microorganisms 14.9 Conclusion References