دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Harald Luschgy . Gilles Pagès
سری: Probability Theory and Stochastic Modelling 105
ISBN (شابک) : 9783031454639, 9783031454646
ناشر: Springer Nature Switzerland
سال نشر: 2023
تعداد صفحات: 912
[918]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Marginal and Functional Quantization of Stochastic Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کوانتیزاسیون حاشیه ای و عملکردی فرآیندهای تصادفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کوانتیزاسیون برداری، یک روش گسسته سازی پیشگام بر اساس جستجوی نزدیکترین همسایه، در دهه 1950 عمدتاً در پردازش سیگنال، مهندسی برق و نظریه اطلاعات پدیدار شد. بعداً در دهه 1960، به یک تکنیک طبقه بندی خودکار برای تولید نمونه های اولیه از مجموعه داده های گسترده تبدیل شد. در اصطلاح مدرن، می توان آن را به عنوان یک سهم اساسی در یادگیری بدون نظارت از طریق الگوریتم خوشه بندی k-means در علم داده تشخیص داد. در مقابل، کوانتیزاسیون تابعی، یک حوزه مطالعاتی جدیدتر که قدمت آن به اوایل دهه 2000 بازمیگردد، بر کمیت کردن فرآیندهای تصادفی زمان پیوسته که به عنوان بردارهای تصادفی در فضاهای تابع Banach مشاهده میشوند، تمرکز دارد. این کتاب خود را با بررسی کمی کردن بردارهای تصادفی با مقادیر در فضای Banach متمایز می کند - یکی از ویژگی های منحصر به فرد محتوای آن. اهداف اصلی آن دو چیز است: اول، ارائه یک مرور جامع و منسجم از آخرین پیشرفتها و همچنین چندین نتیجه جدید در نظریه کوانتیزهسازی بهینه، که هر دو بعد محدود و نامحدود را در بر میگیرد، بر اساس پیشرفتهایی که در سخنرانی Graf و Luschgy توضیح داده شده است. حجم یادداشت ها ثانیاً، نشان میدهد که چگونه کمیسازی بهینه میتواند به عنوان یک روش گسستهسازی فضا در نظریه احتمال و احتمال عددی، بهویژه در زمینههایی مانند مالی کمی استفاده شود. کاربردهای اصلی احتمال عددی، تقریب کنترلشده انتظارات منظم و مشروط با فرمولهای مکعبی مبتنی بر کوانتیزاسیون، با کاربردهای گسستهسازی زمان-فضای فرآیندهای مارکوف، معمولاً انتشارات براونی، توسط درختان کوانتیزهسازی است. در حالی که در درجه اول به ریاضیدانان متخصص در تئوری احتمال و احتمال عددی میپردازد، اما برای دانشمندان داده، مهندسان برق درگیر در انتقال دادهها و متخصصان اقتصاد و تدارکات که شیفته مسائل تخصیص بهینه هستند نیز ارتباط دارد.
Vector Quantization, a pioneering discretization method based on nearest neighbor search, emerged in the 1950s primarily in signal processing, electrical engineering, and information theory. Later in the 1960s, it evolved into an automatic classification technique for generating prototypes of extensive datasets. In modern terms, it can be recognized as a seminal contribution to unsupervised learning through the k-means clustering algorithm in data science. In contrast, Functional Quantization, a more recent area of study dating back to the early 2000s, focuses on the quantization of continuous-time stochastic processes viewed as random vectors in Banach function spaces. This book distinguishes itself by delving into the quantization of random vectors with values in a Banach space—a unique feature of its content. Its main objectives are twofold: first, to offer a comprehensive and cohesive overview of the latest developments as well as several new results in optimal quantization theory, spanning both finite and infinite dimensions, building upon the advancements detailed in Graf and Luschgy\'s Lecture Notes volume. Secondly, it serves to demonstrate how optimal quantization can be employed as a space discretization method within probability theory and numerical probability, particularly in fields like quantitative finance. The main applications to numerical probability are the controlled approximation of regular and conditional expectations by quantization-based cubature formulas, with applications to time-space discretization of Markov processes, typically Brownian diffusions, by quantization trees. While primarily catering to mathematicians specializing in probability theory and numerical probability, this monograph also holds relevance for data scientists, electrical engineers involved in data transmission, and professionals in economics and logistics who are intrigued by optimal allocation problems.
Preface Contents Notation Index Other Notations About Sequences Part I Basics and Marginal Quantization Chapter 1 Optimal and Stationary Quantizers 1.1 What is Functional Quantization? 1.2 Optimal Quantizers and Quantization Error 1.3 Stationary Quantizers Stationarity for random vectors in a Hilbert space Stationarity for stochastic processes 1.4 Pathwise Regularity of Stationary Quantizers in ???????? -Spaces and Examples 1.5 Increments of Quantization Errors and Micro-Macro Inequalities 1.6 Greedy Quantization 1.7 Application: Quantization-Based Characterizations of W????-Convergence Hilbert setting Finite-dimensional setting: Comments Chapter 2 The Finite-Dimensional Setting I 2.1 Sharp Asymptotics of the Quantization Errors and the Point Density Measure Sharp asymptotics The point density measure Universal nonasymptotic bounds and sharp asymptotics 2.2 Exact Asymptotics of the Increments of Quantization Errors 2.3 Distortion Mismatch and Distribution Mismatch The lower estimate The upper estimate Pure distortion mismatch Pure distribution mismatch 2.4 Geometry of Optimal Quantizers Radial exponential tails Radial polynomial tails Quantization radius and random quantization 2.5 Geometry of Rate-Optimal Quantizers 2.6 Local Behaviour of Optimal Quantizers Distance of codewords, inradius and circumradius of Voronoi cells Distributions with connected compact support The local quantization behaviour in compact subsets of the interior of the support Sharp results in dimension 1 Distributions with radial tails Comments Chapter 3 The Finite-Dimensional Setting II 3.1 Random Quantization Mean ???????? -quantization error Almost sure behaviour of ???????? -quantization errors 3.2 Empirical Quantization Nonasymptotic bounds 3.3 Greedy Quantization Universal nonasymptotic bounds and rate-optimality Distortion mismatch and distribution mismatch Pure distortion mismatch and universal nonasymptotic bounds Geometric features Further remarks (greedy quantization versus quasi-Monte Carlo method) Comments Part II Functional Quantization Chapter 4 Functional Quantization, Small Ball Probabilities, Metric Entropy and Series Expansions for Gaussian Processes 4.1 Functional Quantization and Small Ball Probabilities Upper bound and random quantization Lower bound Synthesis 4.2 Functional Quantization and Metric Entropy 4.3 Applications and Examples: Exact Rates of Decay of Quantization Errors Mean regular processes Stationary processes Sheets Smooth processes R????-valued processes 4.4 Functional Quantization, Expansions and Parseval Frames Admissibility and frames Continuous Gaussian processes A criterion for rate-optimal expansions l-norms ????2(P)-continuous Gaussian processes Stationary Gaussian processes and Gaussian processes with stationary increments Functional quantization and expansions 4.5 Product Quantization, Constructive Asymptotic Optimality and Distortion Mismatch Scalar product quantization and distortion mismatch Constructive asymptotic optimality Comments Chapter 5 Spectral Methods for Gaussian Processes 5.1 Optimal and Stationary Quantizers The quadratic case Finite-dimensional subproblems The Gaussian case Comparison of rates 5.2 Shannon Entropy The Kolmogorov–Pinsker–Ihara formula and a source coding theorem Two quantization constants Comparison of rates 5.3 Critical Dimension and Sharp Asymptotics of the Quantization Errors Regularly varying eigenvalues, quadratic case Upper bound Lower bound Synthesis Entropy and small ball probabilities Back to the conjecture(s) The case 5.4 Shannon Entropy and Strong Equivalence of Moments Proof of Theorem 5.4.1 Exponential decay of eigenvalues 5.5 Applications and Examples 5.6 Constructive Asymptotic Optimality, Product Quantization and Distortion Mismatch Known eigensystem Unknown eigenvectors Comments Chapter 6 Geometry of Optimal and Rate-Optimal Quantizers for Gaussian Processes 6.1 Quantization Ball and Radius of Optimal Quantizers 6.2 Increments of the Quantization Errors Covering radius Quantization ball 6.3 Proofs of the Results of Section 6.1 6.4 Quantization Ball and Radius of Rate-Optimal Quantizers Comments Chapter 7 Mean Regular Processes 7.1 Product Quantization, Universal Upper Bounds for Quantization Error Rates and Constructive Asymptotic Optimality Product quantization and upper bound for quantization error rates Constructive asymptotic optimality A nonconstructive link 7.2 Brownian Diffusion Processes Itô processes Brownian diffusions Constructive rate-optimal quantization Product quantization based on the Euler scheme Constructive asymptotic optimality based on the Euler scheme 7.3 Lévy Processes Moment estimates, quantization rates for general Lévy processes without Brownian component An exact rate for Lévy processes with a Brownian component Subordinated Lévy processes Regularly varying Lévy tails, ???? ≥ ????∗ (????) Constructive asymptotic optimality Final remark on R????-valued Lévy processes Comments Part III Algorithmic Aspects and Applications Chapter 8 Optimal Quantization From the Numerical Side (Static) 8.1 From the Master Equation to Grid Optimization Zero search procedures 8.2 Fixed Point Procedures (Lloyd’s Family) Nearest neighbour search 8.3 The One-Dimensional Quadratic Case Back to the fixed point Lloyd algorithm (and its acceleration) Gradient descent: the “mean-field/batch” CLVQ algorithm Newton–Raphson algorithm (fast quantization for absolutely continuous distributions) Practitioner’s corner (splitting method) 8.4 Uniqueness of ????????-Stationary Quantizers for log-Concave Distributions 8.5 Greedy Algorithms l-dimensional setting Deterministic algorithm in the two-dimensional case (greedy Lloyd algorithm) Comments Chapter 9 Applications: Quantization-Based Cubature Formulas 9.1 Cubature Formulas for Expectations and Conditional Expectations Cubature formulas based on stationary quantizations Quantization-based cubature formulas for conditional expectations Quantization versus worst case Monte Carlo method 9.2 Cubature: Rates Finite-dimensional setting: ???? = R???? Functional setting: ???? = ????(T) Hilbert setting 9.3 Richardson–Romberg Extrapolation The 1-dimensional case General case (heuristics) 9.4 Quantization-Based Variance Reduction Method A hybrid quantization-Monte Carlo method Universal stratified sampling A(n optimal) quantization-based universal stratification: a minimax approach Comments Chapter 10 Quantization-Based Numerical Schemes 10.1 Standard Marginal Quantization of an R????-Valued Markov Chain Monte Carlo calibration of a quantization tree The case of smooth transitions or how to parallelize the transition weights computation The one-dimensional setting 10.2 Example of Application: Quantization-Based Algorithm for Discrete Time Optimal Stopping Euler scheme of a Brownian diffusion with Lipschitz coefficients Brownian quantization tree 10.3 Practitioner’s Corner: How to Calibrate a Quantization Tree (Example) 10.4 Recursive Markovian Quantization of a Markov Chain Strong approximation, Setting I Strong approximation, Setting II Embedded optimization of the Markovian quantization tree: grid optimization and weight computation Back to optimal stopping: approach by recursive quantization Other applications 10.5 Weak Error Rate for Recursive Quantization (Smooth Functions, Setting I) Application to numerical schemes of diffusions 10.6 Standard Versus Recursive Quantization-Based Schemes? 10.7 Further Numerical Applications of Optimal Quantization(s) Comments Appendices Appendix A Radon Random Vectors, Stochastic Processes and Inequalities A.1 Radon Random Vectors A.2 Radon Gaussian Random Vectors A.3 Stochastic Processes as Random Vectors ???????? -spaces C-spaces A.4 Conditional Expectation Appendix B Miscellany B.1 Hausdorff Metric B.2 Regular Variation B.3 Sequences of Real Numbers B.4 Hardy–Littlewood Maximal Functions and Volume Control References Index