ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Many-Body Theory of Molecules, Clusters and Condensed Phases

دانلود کتاب نظریه بسیاری از بدن از مولکول ها ، خوشه ها و فازهای متراکم شده

Many-Body Theory of Molecules, Clusters and Condensed Phases

مشخصات کتاب

Many-Body Theory of Molecules, Clusters and Condensed Phases

ویرایش:  
نویسندگان: ,   
سری: World Scientific Series in 20th Century Physics 41 
ISBN (شابک) : 9814271772, 9789814271776 
ناشر: World Scientific 
سال نشر: 2009 
تعداد صفحات: 913 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 250 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Many-Body Theory of Molecules, Clusters and Condensed Phases به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه بسیاری از بدن از مولکول ها ، خوشه ها و فازهای متراکم شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه بسیاری از بدن از مولکول ها ، خوشه ها و فازهای متراکم شده

این کتاب مروری جامع بر نتایج اولیه و همچنین اخیر در تئوری فازهای متراکم، از جمله فلزات مایع، مایعات کوانتومی و کریستال‌های ویگنر، همراه با کاربردهای منتخب، به ویژه در شیمی فیزیکی مولکول‌ها و خوشه‌ها، ارائه می‌کند. بخش بزرگی از این کار به تقریب نیمه کلاسیک ThomasFermi برای مولکول ها و فازهای متراکم و گسترش آن به مایعات الکترونی ناهمگن و فلزات مایع اختصاص دارد. اثرات همبستگی در مایعات کوانتومی و تبلور ویگنر از دیگر زمینه‌های تمرکز این کار با تأکید بر تأثیر ابعاد کم و میدان‌های مغناطیسی است. این جلد مجموعه ای از تجدید چاپ های N H March و همکارانش در طول پنج دهه است.


توضیحاتی درمورد کتاب به خارجی

This book provides a comprehensive review of seminal as well as recent results in the theory of condensed phases, including liquid metals, quantum liquids and Wigner crystals, along with selected applications, especially in the physical chemistry of molecules and clusters. A large part of this work is dedicated to the ThomasFermi semiclassical approximation for molecules and condensed phases, and its extension to inhomogeneous electron liquids and liquid metals. Correlation effects in quantum liquids and Wigner crystallization are other areas of focus of this work, with an emphasis towards the effect of low dimensionality and magnetic fields. The volume is a collection of reprints by N H March and collaborators over five decades.



فهرست مطالب

Contents
Part 1: Quantal electron crystals
	[1] N. H. March, Kinetic and potential energies of an electron gas
	[2] N. H. March and W. H. Young, Probability density of electron separation in a uniform electron gas
	[3] W. H. Young and N. H. March, A density matrix approach to correlation in a uniform electron gas
	[4] J. Durkan, R. J. Elliott, and N. H. March, Localization of electrons in impure semiconductors by a magnetic field
	[5] C. M. Care and N. H. March, Electrical conduction in the Wigner lattice in n type InSb in a magnetic field
	[6] C. M. Care and N. H. March, Electron crystallization
	[7] M. Parrinello and N. H. March, Thermodynamics of Wigner crystallization
	[8] N. H. March, M. Suzuki, and M. Parrinello, Phenomenological theory of first- and second-order metal-insulator transitions at absolute zero
	[9] F. Herman and N. H. March, Cooperative magnetism in metallic jellium and in the insulating Wigner electron crystal
	[10] M. J. Lea and N. H. March, Quantum-mechanical Wigner electron crystallization with and without magnetic fields
	[11] M. J . Lea and N. H. March,The electron liquid-solid phase transition in two dimensions in a magnetic field
	[12] M. J. Lea and N. H. March, The shear modulus and the phase diagram for two-dimensional Wigner electron crystals
	[13] M. J. Lea, N. H. March, and W. Sung, Thermodynamics of melting of a two-dimensional Wigner electron crystal
	[14] N. H. March, B. V. Paranjape, and F. Siringo, Can the hole liquid undergo Wigner crystallization in high-TcLa2-xSrx CU04 at low density?
	[15] F. Siringo, M. J. Lea, and N. H. March, Self-consistent force constant calculation for a two-dimensional Wigner electron crystal in high magnetic fields, and limitations of Lindemann's Law of melting
	[16] A. Holas and N. H. March, Remnants of the Fermi surface in the Wigner electron crystal phase of a strongly interacting one-dimensional system
	[17] M. J. Lea, N. H. March, and W. Sung, Melting of Wigner electron crystals: phenomenology and anyon magnetism
	[18] N. H. March, Melting of a magnetically induced Wigner electron solid and anyon properties
	[19] G. Senatore and N. H. March, Recent progress in the field of electron correlation
	[20] N. H. March, Thermodynamics of the equilibrium between a fractional quantum Hall liquid and a Wigner electron solid
	[21] R. H. Squire and N. H. March, Fulleride superconductivity compared and contrasted with RVB theory of high Tc cuprates
	[22] N. H. March and R. H. Squire, Fingerprints of quantal Wigner solid-like correlations in D-dimensional assemblies
	[23] F. Claro, A. Cabo, and N. H. March, On the phase diagram of a two-dimensional electron gas near integer fillings and fractions such as 1/5 and 1/7
	[24] P. Capuzzi, N. H. March, and M. P. Tosi, Wigner bosonic molecules with repulsive interactions and harmonic confinement
	[25] N. H. March, A. Cabo, and F. Claro, Phase diagram of two-dimensional electron gas in a perpendicular magnetic field around Landau level filling factors v = 1 and 3
	[26] N. H. March, Quantum statistics of charged particles and fingerprints of Wigner crystallization in D dimensions
Part 2: Structure, forces and electronic correlation functions in liquid metals
	Part 2a. Nuclear structure factor and pair potentials in some sp liquid metals
		[1] T. Gaskell and N. H. March, Electronic momentum distribution in liquid metals and long-range oscillatory interactions between ions
		[2] M. D. Johnson and N. H. March, Long-range oscillatory interaction between ions in liquid metals
		[3] J. Worster and N. H. March, Interaction energies between defects in metals
		[4] J. E. Enderby and N. H. March, Interatomic forces and the structure of liquids
		[5] C. C. Matthai and N. H. March, Small angle scattering from liquids: van der Waals forces in argon and collective mode in Na
		[6] I. Ebbsjo, G. G. Robinson, and N. H. March, Structure and forces in simple liquid metals
		[7] A. B. Bhatia and N. H. March, Properties of liquid direct correlation function at melting temperature related to vacancy formation energy in condensed phases of rare gases
		[8] A. B. Bhatia and N. H. March, Relation between principal peak height, position and width of structure factor in dense monatomic liquids
		[9] N. H. March, Electron correlation, chemical bonding and the metal-insulator transition in expanded fluid alkalis
		[10] R. G. Chapman and N. H. March, Magnetic susceptibility of expanded fluid alkali metals
		[11] J. A. Ascough and N. H. March, Structure inversion: Pair potentials with common characteristics from three theories at low density on liquid-vapour coexistence curve of Cs
		[12] F. Perrot and N. H. March, Pair potentials for liquid sodium near freezing from electron theory and from inversion of the measured structure factor
		[13] N. H. March, Information content of diffraction experiments on liquids and amorphous solids
		[14] F. Perrot and N. H. March, Binding in pair potentials of liquid simple metals from nonlocality in electronic kinetic energy
		[15] K. Tankeswar and N. H. March, The deviation of the pair potential from the potential of mean force in molten N a near freezing
		[16] K. I. Golden, N. H. March, and A. K. Ray, Three-particle correlation function and structural theories of dense metallic liquids
		[17] M. Blazej and N. H. March, Long-range polarization interaction in simple liquid metals
		[18] K. I. Golden and N. H. March, Liquid structural theories of two- and three-dimensional plasmas
		[19] G. R. Freeman and N. H. March, Nature of chemical bonding in highly expanded heavy alkalis: especially Cs and Rb
		[20] N. H. March and M. P. Tosi, Diffraction and transport in dense plasmas: especially liquid metals
		[21] N. H. March and J. A. Alonso, Structural corrections to Stokes-Einstein relation for liquid metals near freezing
	Part 2b. Electronic correlation functions in liquid metals
		[1] N. H. March and M. P. Tosi, Quantum theory of pure liquid metals as two-component systems
		[2] M. P. Tosi and N. H. March, Small-angle scattering from liquid metals and alloys and electronic correlation functions
		[3] P. A. Egelstaff, N. H. March, and N. C. McGill, Electron correlation functions in liquids from scattering data
		[4] S. Cusack, N. H. March, M. Parrinello, and M. P. Tosi, Electron–electron pair correlation function in solid and molten nearly-free electron metals
		[5] A. S. Brah, L. Virdhee, and N. H. March, Electron scattering by molten aluminium
		[6] M. W. Johnson, N. H. March, F. Perrot, and A. K. Ray, A diffraction study of the structure of liquid potassium near freezing and density functional theory of pair potentials
		[7] N. H. March, Electronic correlation functions in liquid metals
		[8] N. H. March, Local coordination, electronic correlations and relation between thermodynamic and transport properties of sp liquid metals
		[9] F. E. Leys, N. H. March, and D. Lamoen, Thermodynamic consistency and integral equations for the liquid structure
		[10] F. E. Leys and N. H. March, Electron–electron correlations in liquid s–p metals
		[11] G. G. N. Angilella, N. H. March, and R. Pucci, Low density observations of Rb and Cs chains along the liquid–vapourc oexistence curves to the critical point in relation to quantum-chemical predictions on the metal-insulator transitions in Li and Na rings
Part 3: One-body potential theory of molecules and condensed matter
	Partisc 3a. Thomas-Fermi semiclassical approximation
		[1] N. H. March, Theoretical determination of the electron distribution in benzene by the Thomas–Fermi and the molecular–orbital methods
		[2] N. H. March, Thomas–Fermi fields for molecules with tetrahedral and octahedral symmetry
		[3] N. H. March and J. S. Plaskett, The relation between the Wentzel–Kramers–Brillouin and the Thomas– Fermi approximations
		[4] N. H. March and R. J. White, Non-relativistic theory of atomic and ionic binding energies for large atomic number
		[5] N. H. March, Relation between the total energy and eigenvalue sum for neutral atoms and molecules
		[6] G. P. Lawes and N. H. March, Exact local density method for linear harmonic oscillator
		[7] N. H. March and R. G. Parr, Chemical potential, Teller's theorem and the scaling of atomic and molecular energies
		[8] N. H. March, Inhomogeneous electron gas theory of molecular dissociation energies
		[9] M. Levy, N. H. March, and N. C. Handy, On the adiabatic connection method, and scaling of electron–electron interactions in the Thomas–Fermi limit
		[10] C. Amovilli and N. H. March, Two-dimensional electrostatic analog of the March model of C60 with a semiquantitative application to planar ring clusters
	Part 3b. Transcending Thomas-Fermi theory
		[1] N. H. March and W. H. Young, Approximate solutions of the density matrix equation for a local average field
		[2] N. H. March and A. M. Murray, Relation between Dirac and canonical density matrices, with applications to imperfections in metals
		[3] G. K. Corless and N. H. March, Electron theory of interaction between point defects in metals
		[4] J. C. Stoddart and N. H. March, Exact Thomas–Fermi method in perturbation theory
		[5] N. H. March, Differential equation for the ground-state density in finite and extended inhomogeneous electron gases
		[6] N. H. March, Spatially dependent generalization of Kato’s theorem for atomic closed shells in a bare Coulomb field
		[7] N. H. March, The local potential determining the square root of the ground-state electron density of atoms and molecules from the Schrodinger equation
		[8] H. Lehmann and N. H. March, Differential equation for Slater sum in an inhomogeneous electron liquid
		[9] S. Pfalzner, H. Lehmann, and N. H. March, Bound-state plus continuum electron densities, and Slater sum, in a bare Coulomb field
		[10] A. Holas and N. H. March, Exact exchange-correlation potential and approximate exchange potential in terms of density matrices
		[11] M. Levy and N. H. March, Line-integral formulas for exchange and correlation potentials separately
		[12] A. Holas and N. H. March, Potential-locality constraint in determining an idempotent density matrix from diffraction experiment
		[13] A. Holas and N. H. March, Field dependence of the energy of a molecule in a magnetic field
		[14] I. A. Howard, N. H. March, P. Senet, and V. E. Van Doren, Nonrelativistic exchange-energy density and exchange potential in the lowest order of the 1/Z expansion for ten-electron atomic ions
		[15] N. H. March, I. A. Howard, A. Holas, P. Senet, and V. E. Van Doren, Nuclear cusp conditions for components of the molecular energy density relevant for density-functional theory
		[16] I. A. Howard, N. H. March, and J. D. Talman, Nonrelativistic variationally optimized exchange potentials for Ne-like atomic ions having large atomic number
		[17] N. H. March, I. A. Howard, and V. E. Van Doren, Recent progress in constructing nonlocal energy density functionals
		[18] N. H. March and I. A. Howard, Propagator and Slater sum in one-body potential theory
		[19] I. A. Howard and N. H. March, Corrections to Slater exchange potential in terms of Dirac idempotent density matrix: With an approximate application to Be-like positive atomic ions for large atomic number
		[20] I. A. Howard, N. H. March, and P. W. Ayers, Idempotent density matrix derived from a local potential V(r) in terms of HOMO and LUMO properties
		[21] N. H. March, P. Geerlings, and K. D. Sen, Electrostatic interpretation of the force -




نظرات کاربران