دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Bashir Ahmed Mir
سری:
ISBN (شابک) : 1032060093, 9781032060095
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 415
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Manual of Geotechnical Laboratory Soil Testing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای آزمایشات خاک آزمایشگاهی ژئوتکنیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتابچه راهنمای آزمایش خاک آزمایشگاهی ژئوتکنیک ویژگی های فیزیکی، شاخص و مهندسی خاک، از جمله ویژگی های تراکم (محتوای رطوبت بهینه)، نفوذپذیری (ضریب هدایت هیدرولیکی)، ویژگی های تراکم پذیری، و مقاومت برشی را پوشش می دهد. (برق انسجام و زاویه اصطکاک داخلی). علاوه بر این، این کتابچه راهنمای جمع آوری داده ها، تجزیه و تحلیل، محاسبات، ملاحظات اضافی، منابع خطا، اقدامات احتیاطی، و نتایج ارائه همراه با تصاویر کاملاً تعریف شده برای هر یک از آزمون های فهرست شده را پوشش می دهد. هر آزمون بر اساس استانداردهای مربوطه با منابع مرتبط است که به طور گسترده با هدف برنامه های طراحی ژئوتکنیکی انجام می شود.
ویژگی ها
این راهنما برای دانشآموزان و دانشجویان ارشد است. و محققان ژئوتکنیک و مهندسی عمران.
پروفسور (دکتر) بشیر احمد میر یکی از اعضای هیئت علمی ارشد گروه مهندسی عمران انستیتوت ملی فناوری سرینگر است و بیش از دو دهه تجربه تدریس دارد. پروفسور میر بیش از 100 مقاله پژوهشی در مجلات و کنفرانس های بین المللی منتشر کرده است. ریاست جلسات فنی در کنفرانس های بین المللی در هند و سراسر جهان؛ و خدمات مشاوره ای به بیش از 150 پروژه با اهمیت ملی به سازمان های مختلف دولتی و خصوصی ارائه کرد.
Manual of Geotechnical Laboratory Soil Testing covers physical, index, and engineering properties of soils, including compaction characteristics (optimum moisture content), permeability (coefficient of hydraulic conductivity), compressibility characteristics, and shear strength (cohesion intercept and angle of internal friction). Further, this manual covers data collection, analysis, computations, additional considerations, sources of error, precautionary measures, and the presentation results along with well-defined illustrations for each of the listed tests. Each test is based on relevant standards with pertinent references, broadly aimed at geotechnical design applications.
FEATURES
This manual is aimed at undergraduates, senior undergraduates, and researchers in geotechnical and civil engineering.
Prof. (Dr.) Bashir Ahmed Mir is among the senior faculty of the Civil Engineering Department of the National Institute of Technology Srinagar and has more than two decades of teaching experience. Prof. Mir has published more than 100 research papers in international journals and conferences; chaired technical sessions in international conferences in India and throughout the world; and provided consultancy services to more than 150 projects of national importance to various government and private agencies.
Cover Half Title Title Page Copyright Page Contents Systems of Units: Units Conversion Factors/Tables Glossary of Symbols Preface Acknowledgments Overview and Main Goals of Manual Contents Declaration Guidelines for Conducting Soil Tests Notes for Students About the Author 1. Natural Water Content of a Soil Sample 1.1 Objectives 1.2 Introduction 1.2.1 Free Water Content or Moisture Content or Water Content 1.2.2 Adsorbed Water Content 1.2.3 Soil Water 1.2.4 Gravitational Water 1.2.5 Capillary Water 1.2.6 Hygroscopic Water 1.2.7 Interlayer Water 1.2.8 Saline Water 1.2.9 Typical Values of Natural Water Content of Soils 1.3 Determination of Moisture Content by Oven-Drying Method (on Gravimetric basis) 1.3.1 Definitions and Theory 1.3.2 Method of Testing 1.3.3 Soil Testing Material 1.3.4 Testing Equipment and Accessories 1.3.5 Testing Program 1.3.6 Observation Data Sheet and Analysis 1.3.7 Results and Discussions 1.4 Determination of Moisture Content by Pycnometer Method 1.4.1 Definitions and Theory 1.4.2 Method of Testing 1.4.3 Soil Testing Material 1.4.4 Testing Equipment and Accessories 1.4.5 Testing Program 1.4.6 Observation Data Sheet and Analysis 1.4.7 Results and Discussions 1.5 General Comments 1.6 Applications/Role of Natural Water Content in Soil Engineering 1.7 Sources of Error 1.8 Precautions References 2. Field/In-Place Dry Density of a Soil Sample 2.1 Objectives 2.2 Introduction 2.3 Field/In-Place Dry Density of a Soil Sample by Core Cutter Method 2.3.1 Definitions and Theory 2.3.2 Method of Testing 2.3.3 Soil Testing Material 2.3.4 Testing Equipment and Accessories 2.3.5 Testing Program 2.3.6 Observation Data Sheet and Analysis 2.3.7 Results and Discussions 2.4 Field/In-situ Dry Density of Soil by Sand Replacement Method 2.4.1 Definitions and Theory 2.4.2 Method of Testing 2.4.3 Soil Testing Material (Sand) 2.4.4 Testing Equipment and Accessories 2.4.5 Test Program, Data Sheet, and Analysis for the Sand Displacement Method 2.4.6 Observation Data Sheet and Analysis 2.4.7 Results and Discussions 2.5 Field/In-situ Dry Density of a Soil Sample by Water Displacement Method 2.5.1 Definitions and Theory 2.5.2 Method of Testing 2.5.3 Soil Testing Material 2.5.4 Testing Equipment and Accessories 2.5.5 Testing Program 2.5.6 Observation Data Sheet and Analysis 2.5.7 Results and Discussions 2.6 General Comments 2.7 Applications/Role of Dry Density in Soil Engineering 2.8 Sources of Error 2.9 Precautions References 3. Specific Gravity of Soil Solids 3.1 Objectives 3.2 Introduction 3.3 Specific Gravity of Soil Solids by Density Bottle Method 3.3.1 Definitions and Theory 3.3.2 Method of Testing 3.3.3 Soil Testing Material 3.3.4 Testing Equipment and Accessories 3.3.5 Testing Program 3.3.6 Observation Data Sheet and Analysis 3.3.7 Results and Discussions: Based on Test Results, Specific Gravity of Solids at 24°C = 2.72 3.4 Specific Gravity of Soil Solids by Pycnometer Method 3.4.1 Definitions and Theory 3.4.2 Method of Testing 3.4.3 Soil Testing Material 3.4.4 Testing Equipment and Accessories 3.4.5 Testing Program 3.4.6 Observation Data Sheet and Analysis 3.4.7 Results and Discussions 3.5 General Comments 3.6 Applications of Specific Gravity 3.7 Sources of Error 3.8 Precautions References 4. Particle or Grain Size Distribution of Soils by Sieve Analysis 4.1 Objectives 4.2 Introduction 4.3 Definitions and Theory 4.4 Method of Testing 4.5 Soil Testing Material 4.6 Testing Equipment and Materials 4.7 Testing Program 4.8 Observation Data Sheet and Analysis 4.9 Results and Discussions 4.10 General Comments 4.11 Applications/Role of Sieve Analysis in Soil Engineering 4.12 Sources of Error 4.13 Precautions 4.14 Limitations of Sieve Analysis References 5. Particle Size Distribution Analysis by the Hydrometer Method 5.1 Objectives 5.2 Introduction 5.3 Definitions and Theory 5.4 Method of Testing 5.5 Soil Testing Material 5.6 Testing Equipments and Accessories 5.7 Testing Program 5.7.1 Calibration of Hydrometer and Sedimentation Jar 5.7.2 Effective Height (He) and Immersion Correction 5.7.3 Hydrometer Calibration Curves 5.7.4 Hydrometer Reading Corrections 5.7.4.1 Meniscus Correction (Cm) 5.7.4.2 Dispersing Agent Correction (Cd) 5.7.4.3 Temperature Correction (Ct) 5.7.4.4 Composite Correction (C) 5.7.5 Pre-Treatment of Soil 5.7.6 Preparation of Suspension with Dispersing Agent 5.7.7 Sedimentation Test 5.7.8 Observation Data Sheet and Analysis 5.7.9 Results and Discussions 5.8 General Comments 5.9 Applications of Hydrometer Analysis 5.10 Sources of Error 5.11 Precautions References 6. Atterberg Limits of a Fine-Grained Soil Sample 6.1 Objectives 6.2 Introduction 6.3 Definitions and Theory 6.3.1 Atterberg Limits 6.3.2 Soil Consistency 6.4 Method of Testing 6.5 Determination of Liquid Limit of a Remolded Fine-Grained Soil Sample by Casagrande's Method (IS: 2720-Part 5; ASTM D4318; BS 1377: Part 2) 6.5.1 Soil Testing Material 6.5.2 Testing Equipment and Accessories 6.5.3 Testing Program 6.5.4 Observation Data Sheet and Analysis 6.5.5 Results and Discussions 6.5.6 Precautions 6.5.7 General Comments 6.5.8 Sources of Error 6.5.9 Limitations of Casagrande Method for Determination of Liquid Limit 6.6 Determination of Plastic limit of a Remolded Fine Grained Soil Sample (IS: 2720-Part 5; ASTM D4318; BS 1377: Part 2) 6.6.1 Objectives 6.6.2 Definitions and Theory 6.6.3 Soil Testing Material 6.6.4 Testing Equipment and Accessories 6.6.5 Testing Program 6.6.6 Observation Data Sheet and Analysis 6.6.7 Results and Discussions 6.6.8 General Comments 6.6.9 Sources of Error 6.6.10 Precautions 6.7 Determination of Shrinkage Limit of a Remolded Fine Grained Soil Sample References: IS: 2720 (Part 6); IS: 10077; ASTM D 427; BS 1377: Part 2 (1990) 6.7.1 Objectives 6.7.2 Definitions and Theory 6.7.3 Soil Testing Material 6.7.4 Testing Equipment and Allied Accessories 6.7.5 Testing Program 6.7.6 Observation Data Sheet and Analysis 6.7.7 Results and Discussions 6.7.8 General Comments 6.7.9 Precautions 6.7.10 Determination of Shrinkage Limit from Known Value of Specific Gravity of a Soil Sample 6.7.11 Determination of Specific Gravity of a Soil Sample from Known Value of Shrinkage Limit 6.7.12 Applications/Role of Shrinkage Limit in Soil Engineering 6.8 To Determine Liquid Limit of a Remolded Soil Sample by Cone Penetrometer Method References: IS: 11196-1985; ASTM D 427; BS 1377: Part 2 (1990) 6.8.1 Objectives 6.8.2 Introduction 6.8.3 Soil Testing Material 6.8.4 Testing Equipment and Accessories (IS: 11196 - 1985) 6.8.5 Testing Program 6.8.6 Observation Data Sheet and Analysis 6.8.7 Results and Discussions 6.8.8 Advantages of Cone Penetrometer Method 6.8.9 Precautions Test 6.9. To Determine Liquid Limit of a Remolded Soil Sample by ONE POINT Method using Casagrande Apparatus 6.9.1 Objectives 6.9.2 Definitions and Theory 6.9.3 Soil Testing Material 6.9.4 Testing Equipment and Accessories 6.9.5 Testing Program 6.9.6 Observation Data Sheet and Analysis/Results and Discussions 6.9.7 General Comments 6.9.8 Precautions 6.10 Derived Indices from Atterberg limits 6.10.1 Index Properties of Fine Grained Soils 6.10.2 Derived Indices from Atterberg limits 6.11 Significance/Applications of Atterberg Limits and Indices 6.11.1 Identification and Classification of Fine Grained Soils 6.11.2 Classification of Fine Grained Soil Mass Using Index Properties and Allied Indices 6.11.2.1 Identification of Constituents (e.g. silt and clay dominance) and Type of Clay Mineral 6.11.2.2 To Check the In Situ State of Soil 6.11.2.3 To Check the Water-Holding Capacity of Clays as Defined by "Activity" 6.11.3 Use of Consistency Limits and Indices as Indicative of Engineering Properties 6.11.4 Relationship between Consistency Limits and Derived Indices with Compaction Characteristics 6.11.5 Relationship between Consistency Limits and Derived Indices with Compressibility Characteristics 6.11.6 Relationship between Consistency Limits and Derived Indices with Strength Characteristics (undrained shear strength) 6.12 General Comments References 7. Organic Matter in a Fine Grained Soil Sample 7.1 Objectives 7.2 Introduction 7.3 Definitions and Theory 7.4 Method of Testing 7.5 Soil Testing Material 7.6 Testing Equipment and Accessories 7.7 Testing Program Part A: Direct Method—Determination of Loss on Ignition 7.7.1 Observation Data Sheet and Analysis 7.7.2 Results and Discussions 7.8 Testing Program-Part B: Indirect Method 7.9 Results and Discussions 7.10 General Comments 7.11 Precautions References 8. Relative Density of a Soil Sample 8.1 Objectives 8.2 Introduction 8.3 Definitions and Theory 8.3.1 Maximum Density 8.3.2 Minimum Density 8.4 Method of Testing 8.5 Soil Testing Material 8.6 Testing Equipment and Accessories 8.7 Testing Program 8.8 Observation Data Sheet and Analysis 8.9 Results and Discussions 8.10 General Comments 8.11 Applications/Role of Relative Density in Soil Engineering 8.12 Sources of Error 8.13 Precautions References 9. Compaction Characteristics of a Soil Specimen 9.1 Objectives 9.2 Introduction 9.3 Definitions and Theory 9.3.1 Zero Air Curve and Theoretical Dry Density 9.4 Method of Testing 9.5 Soil Testing Material 9.6 Testing Equipment and Accessories 9.7 Testing Program 9.8 Observation Data Sheet and Analysis 9.9 Results and Discussions 9.10 General Comments 9.10.1 Why (OMC) Against (MDD)? 9.10.2 Other Important Comments 9.11 Applications 9.12 Sources of Error 9.13 Precautions References 10. Coefficient of Permeability or Hydraulic Conductivity of Soils 10.1 Objectives 10.2 Definitions and Theory 10.3 Method of Testing 10.4 Soil Testing Material—Preparation of Soil Specimen 10.4.1 Preparation of Undisturbed Soil Specimens 10.4.2 Preparation of Remolded Soil Specimens 10.4.3 Preparation of Reconstituted Soil Specimens 10.5 Testing Equipment and Accessories (for both test methods) 10.6 Testing Program 10.6.1 Coefficient of Permeability of Soil by Constant Head Test Method 10.6.1.1 Observation Data Sheet and Analysis 10.6.1.2 Results and Discussions 10.6.2 Coefficient of Permeability of Soils by Falling Head Test Method 10.6.2.1 Observation Data Sheet and Analysis 10.6.2.2 Results and Discussions 10.7 General Comments 10.7.1 Additional Comments 10.8 Applications 10.9 Sources of Error 10.10 Precautions References 11. Consolidation Test of a Soil Sample 11.1 Objective 11.2 Definitions and Theory 11.2.1 Compression of Soils Due to Expulsion of Water: Volume Change Behavior in Soils 11.2.2 Consolidation: Time-Dependent Load-Deformation Process 11.2.3 Consolidation Parameters 11.2.3.1 Compression Index: Cc 11.2.3.2 Re-Compression/Swelling Index: Cr or Cs 11.2.3.3 Initial Void Ratio (eo) 11.2.3.4 Coefficient of Compressibility: av 11.2.3.5 Modulus of Volume Change: mv 11.2.3.6 Preconsolidation Pressure: p′c 11.2.3.7 Coefficient of Consolidation (1-D vertical): Cv or (radial: Ch or Cr) 11.2.3.8 Coefficient of Permeability: k 11.2.3.9 Settlement 11.2.3.10 Field Consolidation Curve 11.3 Method of Testing 11.3.1 Pre-Requisite for One-Dimensional Consolidation Test 11.3.2 Soil Testing Material 11.3.3 Size and Preparation of Soil Specimen 11.4 Testing Equipment and Accessories 11.5 Testing Program 11.6 Observation Data Sheet and Analysis 11.6.1 Compressibility Parameters (CC, e, pc) by Height of Solids Method 11.6.2 Determination of Void Ratio, Comp. Index, and Preconsolidation Pressure by Change in Void Ratio Method 11.6.3 Determination of Coeff. of Vertical Consolidation (Cv) 11.6.3.1 Taylor's Root of Time Fitting Method 11.6.3.2 Casagrande's Log Time Fitting Method 11.6.3.3 Rectangular Hyperbola Method (1987) 11.6.4 Determination of Coefficient of Permeability (k) 11.7 General Comments 11.8 Applications/Role of Consolidation Parameters in Soil Engineering 11.8.1 Types of Settlement—Based on Mode of Occurrence, Various Types of Settlements 11.9 Sources of Error 11.10 Precautions References 12. Unconfined Compression Strength of Soils 12.1 Objectives 12.2 Definitions and Theory 12.2.1 Principle of "UCS" Test 12.3 Method of Testing 12.3.1 Pre-Requisite for Unconfined Compression Strength (UCS) Test 12.3.2 Soil Testing Material 12.3.3 Size and Preparation of Soil Specimen 12.4 Testing Equipment and Accessories 12.5 Testing Program 12.6 Observation Data Sheet and Analysis 12.6.1 Determination of Water Content and Dry Unit Weight 12.6.2 Determination of Undrained Shear Strength by "UC" Test 12.7 General Comments 12.8 Applications/Role of "UCS" in Soil Engineering 12.9 Sources of Error 12.10 Precautions References 13. Vane Shear Test for Cohesive Soils 13.1 Objective 13.2 Definitions and Theory 13.3 Method of Testing 13.3.1 Pre-Requisite for VST 13.3.2 Soil Testing Material 13.4 Testing Equipment and Material 13.5 Testing Program 13.6 Observation Data Sheet and Analysis 13.7 General Comments 13.7.1 Other Allied Methods for Determining Undrained Shear Strength 13.8 Applications/Role of "VST" in Soil Engineering 13.9 Sources of Error 13.10 Precautions References 14. Direct Shear Test (DST) for Soils 14.1 Objectives 14.2 Definitions and Theory 14.2.1 Drained and Undrained Conditions Soil Tests 14.2.2 Shear Strength in Undrained or Drained Condition? 14.2.3 Strain-Controlled Tests 14.2.4 Principle of the Direct Shear Test 14.3 Method of Testing 14.3.1 Pre-Requisite for Direct Shear Test (DST) 14.3.2 Soil Testing Material 14.3.3 Size of Specimen 14.4 Testing Equipment and Accessories 14.5 Testing Program 14.5.1 Sandy Soil or Cohesionless Soil 14.5.2 Cohesive Soil or Clayey Soil 14.6 Observation Data Sheet and Analysis 14.6.1 Determination of Water Content and Dry Unit Weight 14.6.2 Determination Undrained Shear Strength by "DST" Test 14.7 Results and Discussions 14.8 General Comments 14.9 Applications/Role of "DST" in Soil Engineering 14.10 Sources of Error 14.11 Precautions References 15. Shear Strength of Soils by Triaxial Test 15.1 Objectives 15.2 Definitions and Theory 15.2.1 Why Conduct a Triaxial Test? 15.2.2 Basic Principle of a Triaxial Compression Test? 15.2.3 Drainage Boundary Conditions in Triaxial Compression Tests 15.2.4 Skempton's Pore Pressure Parameters 15.2.4.1 Pore Pressure Parameter: B-factor 15.2.4.2 Pore Pressure Parameter: A-factor 15.2.5 Loading Conditions in Triaxial Tests 15.3 Method of Testing 15.3.1 Pre-Requisite for Triaxial Compression Test 15.3.2 Size of Soil Particles in a Soil Specimen 15.3.3 Preparation of Soil Specimen 15.4 Testing Equipment and Accessories 15.5 Testing Program 15.5.1 Unconsolidated Undrained (UU) or Unconsolidated Quick (QU) Test without Pore Water Pressure Measurement 15.5.1.1 Preparation of Soil Specimen 15.5.1.2 Triaxial Saturation Stage for "UU" Test (application of cell pressure) 15.5.2 Triaxial Shearing Stage for "UU" Test (application of deviator stress) 15.5.2.1 Observation Data Sheet and Analysis for "UU" Triaxial Shear Test 15.5.3 Results and Discussions: UU Test 15.5.4 Applications/Role/Significance of and Use of "UU" Test 15.6 Consolidated Undrained (CU or Qc) Triaxial Test 15.6.1 Triaxial Saturation Stage in "CU" Test 15.6.2 Triaxial Consolidation Stage in "CU" Test 15.6.2.1 Observation Data Sheet and Analysis for "CU" Triaxial Consolidation Test 15.6.3 Shearing Stage for "CU" Test 15.6.3.1 Typical Results of CU Triaxial Tests 15.6.4 Applications/Role/Significance of and Use of "CU" Test 15.7 Consolidated Drained Test (CD or S) Triaxial Test 15.7.1 Triaxial Saturation Stage in "CD" Test 15.7.2 Triaxial Consolidation Stage in "CD" Test 15.7.3 Triaxial Shear Stage in "CD" Test 15.7.3.1 Typical Results of Triaxial "CD" Tests 15.7.4 Applications/Role/Significance of and Use of "CD" Test 15.8 General Comments 15.8.1 Some Comments on the Influence of the Type of Test 15.8.2 Effects of Accelerating Tests 15.9 Statement of Strength Principles 15.10 Sources of Error 15.11 Precautions References Index