ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Manual of Geotechnical Laboratory Soil Testing

دانلود کتاب راهنمای آزمایشات خاک آزمایشگاهی ژئوتکنیک

Manual of Geotechnical Laboratory Soil Testing

مشخصات کتاب

Manual of Geotechnical Laboratory Soil Testing

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 1032060093, 9781032060095 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 415 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 46 مگابایت 

قیمت کتاب (تومان) : 52,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Manual of Geotechnical Laboratory Soil Testing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای آزمایشات خاک آزمایشگاهی ژئوتکنیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای آزمایشات خاک آزمایشگاهی ژئوتکنیک



کتابچه راهنمای آزمایش خاک آزمایشگاهی ژئوتکنیک ویژگی های فیزیکی، شاخص و مهندسی خاک، از جمله ویژگی های تراکم (محتوای رطوبت بهینه)، نفوذپذیری (ضریب هدایت هیدرولیکی)، ویژگی های تراکم پذیری، و مقاومت برشی را پوشش می دهد. (برق انسجام و زاویه اصطکاک داخلی). علاوه بر این، این کتابچه راهنمای جمع آوری داده ها، تجزیه و تحلیل، محاسبات، ملاحظات اضافی، منابع خطا، اقدامات احتیاطی، و نتایج ارائه همراه با تصاویر کاملاً تعریف شده برای هر یک از آزمون های فهرست شده را پوشش می دهد. هر آزمون بر اساس استانداردهای مربوطه با منابع مرتبط است که به طور گسترده با هدف برنامه های طراحی ژئوتکنیکی انجام می شود.

ویژگی ها

  • پوشش اساسی از خصوصیات آزمایشگاهی سطح ابتدایی خاک ها را ارائه می دهد
  • اهداف، مفاهیم اساسی، درک عمومی و درک را شرح می دهد. اصول ژئوتکنیکی برای تعیین خواص فیزیکی، شاخص و مهندسی مواد خاک
  • روش های گام به گام برای آزمایش های مختلف را ارائه می دهد. در استانداردهای مربوطه
  • تفسیر داده های تحلیلی خاک و نشان دادن رابطه تجربی بین خواص مختلف خاک
  • شامل برگه داده‌های مشاهده و تجزیه و تحلیل، نتایج و بحث‌ها، و کاربردهای نتایج آزمون است

این راهنما برای دانش‌آموزان و دانشجویان ارشد است. و محققان ژئوتکنیک و مهندسی عمران.

پروفسور (دکتر) بشیر احمد میر یکی از اعضای هیئت علمی ارشد گروه مهندسی عمران انستیتوت ملی فناوری سرینگر است و بیش از دو دهه تجربه تدریس دارد. پروفسور میر بیش از 100 مقاله پژوهشی در مجلات و کنفرانس های بین المللی منتشر کرده است. ریاست جلسات فنی در کنفرانس های بین المللی در هند و سراسر جهان؛ و خدمات مشاوره ای به بیش از 150 پروژه با اهمیت ملی به سازمان های مختلف دولتی و خصوصی ارائه کرد.


توضیحاتی درمورد کتاب به خارجی

Manual of Geotechnical Laboratory Soil Testing covers physical, index, and engineering properties of soils, including compaction characteristics (optimum moisture content), permeability (coefficient of hydraulic conductivity), compressibility characteristics, and shear strength (cohesion intercept and angle of internal friction). Further, this manual covers data collection, analysis, computations, additional considerations, sources of error, precautionary measures, and the presentation results along with well-defined illustrations for each of the listed tests. Each test is based on relevant standards with pertinent references, broadly aimed at geotechnical design applications.

FEATURES

  • Provides fundamental coverage of elementary-level laboratory characterization of soils
  • Describes objectives, basic concepts, general understanding, and appreciation of the geotechnical principles for determination of physical, index, and engineering properties of soil materials
  • Presents the step-by-step procedures for various tests based on relevant standards
  • Interprets soil analytical data and illustrates empirical relationship between various soil properties
  • Includes observation data sheet and analysis, results and discussions, and applications of test results

This manual is aimed at undergraduates, senior undergraduates, and researchers in geotechnical and civil engineering.

Prof. (Dr.) Bashir Ahmed Mir is among the senior faculty of the Civil Engineering Department of the National Institute of Technology Srinagar and has more than two decades of teaching experience. Prof. Mir has published more than 100 research papers in international journals and conferences; chaired technical sessions in international conferences in India and throughout the world; and provided consultancy services to more than 150 projects of national importance to various government and private agencies.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Systems of Units: Units Conversion Factors/Tables
Glossary of Symbols
Preface
Acknowledgments
Overview and Main Goals of Manual Contents
Declaration
Guidelines for Conducting Soil Tests
Notes for Students
About the Author
1. Natural Water Content of a Soil Sample
	1.1 Objectives
	1.2 Introduction
		1.2.1 Free Water Content or Moisture Content or Water Content
		1.2.2 Adsorbed Water Content
		1.2.3 Soil Water
		1.2.4 Gravitational Water
		1.2.5 Capillary Water
		1.2.6 Hygroscopic Water
		1.2.7 Interlayer Water
		1.2.8 Saline Water
		1.2.9 Typical Values of Natural Water Content of Soils
	1.3 Determination of Moisture Content by Oven-Drying Method (on Gravimetric basis)
		1.3.1 Definitions and Theory
		1.3.2 Method of Testing
		1.3.3 Soil Testing Material
		1.3.4 Testing Equipment and Accessories
		1.3.5 Testing Program
		1.3.6 Observation Data Sheet and Analysis
		1.3.7 Results and Discussions
	1.4 Determination of Moisture Content by Pycnometer Method
		1.4.1 Definitions and Theory
		1.4.2 Method of Testing
		1.4.3 Soil Testing Material
		1.4.4 Testing Equipment and Accessories
		1.4.5 Testing Program
		1.4.6 Observation Data Sheet and Analysis
		1.4.7 Results and Discussions
	1.5 General Comments
	1.6 Applications/Role of Natural Water Content in Soil Engineering
	1.7 Sources of Error
	1.8 Precautions
	References
2. Field/In-Place Dry Density of a Soil Sample
	2.1 Objectives
	2.2 Introduction
	2.3 Field/In-Place Dry Density of a Soil Sample by Core Cutter Method
		2.3.1 Definitions and Theory
		2.3.2 Method of Testing
		2.3.3 Soil Testing Material
		2.3.4 Testing Equipment and Accessories
		2.3.5 Testing Program
		2.3.6 Observation Data Sheet and Analysis
		2.3.7 Results and Discussions
	2.4 Field/In-situ Dry Density of Soil by Sand Replacement Method
		2.4.1 Definitions and Theory
		2.4.2 Method of Testing
		2.4.3 Soil Testing Material (Sand)
		2.4.4 Testing Equipment and Accessories
		2.4.5 Test Program, Data Sheet, and Analysis for the Sand Displacement Method
		2.4.6 Observation Data Sheet and Analysis
		2.4.7 Results and Discussions
	2.5 Field/In-situ Dry Density of a Soil Sample by Water Displacement Method
		2.5.1 Definitions and Theory
		2.5.2 Method of Testing
		2.5.3 Soil Testing Material
		2.5.4 Testing Equipment and Accessories
		2.5.5 Testing Program
		2.5.6 Observation Data Sheet and Analysis
		2.5.7 Results and Discussions
	2.6 General Comments
	2.7 Applications/Role of Dry Density in Soil Engineering
	2.8 Sources of Error
	2.9 Precautions
	References
3. Specific Gravity of Soil Solids
	3.1 Objectives
	3.2 Introduction
	3.3 Specific Gravity of Soil Solids by Density Bottle Method
		3.3.1 Definitions and Theory
		3.3.2 Method of Testing
		3.3.3 Soil Testing Material
		3.3.4 Testing Equipment and Accessories
		3.3.5 Testing Program
		3.3.6 Observation Data Sheet and Analysis
		3.3.7 Results and Discussions: Based on Test Results, Specific Gravity of Solids at 24°C = 2.72
	3.4 Specific Gravity of Soil Solids by Pycnometer Method
		3.4.1 Definitions and Theory
		3.4.2 Method of Testing
		3.4.3 Soil Testing Material
		3.4.4 Testing Equipment and Accessories
		3.4.5 Testing Program
		3.4.6 Observation Data Sheet and Analysis
		3.4.7 Results and Discussions
	3.5 General Comments
	3.6 Applications of Specific Gravity
	3.7 Sources of Error
	3.8 Precautions
	References
4. Particle or Grain Size Distribution of Soils by Sieve Analysis
	4.1 Objectives
	4.2 Introduction
	4.3 Definitions and Theory
	4.4 Method of Testing
	4.5 Soil Testing Material
	4.6 Testing Equipment and Materials
	4.7 Testing Program
	4.8 Observation Data Sheet and Analysis
	4.9 Results and Discussions
	4.10 General Comments
	4.11 Applications/Role of Sieve Analysis in Soil Engineering
	4.12 Sources of Error
	4.13 Precautions
	4.14 Limitations of Sieve Analysis
	References
5. Particle Size Distribution Analysis by the Hydrometer Method
	5.1 Objectives
	5.2 Introduction
	5.3 Definitions and Theory
	5.4 Method of Testing
	5.5 Soil Testing Material
	5.6 Testing Equipments and Accessories
	5.7 Testing Program
		5.7.1 Calibration of Hydrometer and Sedimentation Jar
		5.7.2 Effective Height (He) and Immersion Correction
		5.7.3 Hydrometer Calibration Curves
		5.7.4 Hydrometer Reading Corrections
			5.7.4.1 Meniscus Correction (Cm)
			5.7.4.2 Dispersing Agent Correction (Cd)
			5.7.4.3 Temperature Correction (Ct)
			5.7.4.4 Composite Correction (C)
		5.7.5 Pre-Treatment of Soil
		5.7.6 Preparation of Suspension with Dispersing Agent
		5.7.7 Sedimentation Test
		5.7.8 Observation Data Sheet and Analysis
		5.7.9 Results and Discussions
	5.8 General Comments
	5.9 Applications of Hydrometer Analysis
	5.10 Sources of Error
	5.11 Precautions
	References
6. Atterberg Limits of a Fine-Grained Soil Sample
	6.1 Objectives
	6.2 Introduction
	6.3 Definitions and Theory
		6.3.1 Atterberg Limits
		6.3.2 Soil Consistency
	6.4 Method of Testing
	6.5 Determination of Liquid Limit of a Remolded Fine-Grained Soil Sample by Casagrande's Method (IS: 2720-Part 5; ASTM D4318; BS 1377: Part 2)
		6.5.1 Soil Testing Material
		6.5.2 Testing Equipment and Accessories
		6.5.3 Testing Program
		6.5.4 Observation Data Sheet and Analysis
		6.5.5 Results and Discussions
		6.5.6 Precautions
		6.5.7 General Comments
		6.5.8 Sources of Error
		6.5.9 Limitations of Casagrande Method for Determination of Liquid Limit
	6.6 Determination of Plastic limit of a Remolded Fine Grained Soil Sample (IS: 2720-Part 5; ASTM D4318; BS 1377: Part 2)
		6.6.1 Objectives
		6.6.2 Definitions and Theory
		6.6.3 Soil Testing Material
		6.6.4 Testing Equipment and Accessories
		6.6.5 Testing Program
		6.6.6 Observation Data Sheet and Analysis
		6.6.7 Results and Discussions
		6.6.8 General Comments
		6.6.9 Sources of Error
		6.6.10 Precautions
	6.7 Determination of Shrinkage Limit of a Remolded Fine Grained Soil Sample References: IS: 2720 (Part 6); IS: 10077; ASTM D 427; BS 1377: Part 2 (1990)
		6.7.1 Objectives
		6.7.2 Definitions and Theory
		6.7.3 Soil Testing Material
		6.7.4 Testing Equipment and Allied Accessories
		6.7.5 Testing Program
		6.7.6 Observation Data Sheet and Analysis
		6.7.7 Results and Discussions
		6.7.8 General Comments
		6.7.9 Precautions
		6.7.10 Determination of Shrinkage Limit from Known Value of Specific Gravity of a Soil Sample
		6.7.11 Determination of Specific Gravity of a Soil Sample from Known Value of Shrinkage Limit
		6.7.12 Applications/Role of Shrinkage Limit in Soil Engineering
	6.8 To Determine Liquid Limit of a Remolded Soil Sample by Cone Penetrometer Method References: IS: 11196-1985; ASTM D 427; BS 1377: Part 2 (1990)
		6.8.1 Objectives
		6.8.2 Introduction
		6.8.3 Soil Testing Material
		6.8.4 Testing Equipment and Accessories (IS: 11196 - 1985)
		6.8.5 Testing Program
		6.8.6 Observation Data Sheet and Analysis
		6.8.7 Results and Discussions
		6.8.8 Advantages of Cone Penetrometer Method
		6.8.9 Precautions
		Test 6.9. To Determine Liquid Limit of a Remolded Soil Sample by ONE POINT Method using Casagrande Apparatus
		6.9.1 Objectives
		6.9.2 Definitions and Theory
		6.9.3 Soil Testing Material
		6.9.4 Testing Equipment and Accessories
		6.9.5 Testing Program
		6.9.6 Observation Data Sheet and Analysis/Results and Discussions
		6.9.7 General Comments
		6.9.8 Precautions
	6.10 Derived Indices from Atterberg limits
		6.10.1 Index Properties of Fine Grained Soils
		6.10.2 Derived Indices from Atterberg limits
	6.11 Significance/Applications of Atterberg Limits and Indices
		6.11.1 Identification and Classification of Fine Grained Soils
		6.11.2 Classification of Fine Grained Soil Mass Using Index Properties and Allied Indices
			6.11.2.1 Identification of Constituents (e.g. silt and clay dominance) and Type of Clay Mineral
			6.11.2.2 To Check the In Situ State of Soil
			6.11.2.3 To Check the Water-Holding Capacity of Clays as Defined by "Activity"
		6.11.3 Use of Consistency Limits and Indices as Indicative of Engineering Properties
		6.11.4 Relationship between Consistency Limits and Derived Indices with Compaction Characteristics
		6.11.5 Relationship between Consistency Limits and Derived Indices with Compressibility Characteristics
		6.11.6 Relationship between Consistency Limits and Derived Indices with Strength Characteristics (undrained shear strength)
	6.12 General Comments
	References
7. Organic Matter in a Fine Grained Soil Sample
	7.1 Objectives
	7.2 Introduction
	7.3 Definitions and Theory
	7.4 Method of Testing
	7.5 Soil Testing Material
	7.6 Testing Equipment and Accessories
	7.7 Testing Program Part A: Direct Method—Determination of Loss on Ignition
		7.7.1 Observation Data Sheet and Analysis
		7.7.2 Results and Discussions
	7.8 Testing Program-Part B: Indirect Method
	7.9 Results and Discussions
	7.10 General Comments
	7.11 Precautions
	References
8. Relative Density of a Soil Sample
	8.1 Objectives
	8.2 Introduction
	8.3 Definitions and Theory
		8.3.1 Maximum Density
		8.3.2 Minimum Density
	8.4 Method of Testing
	8.5 Soil Testing Material
	8.6 Testing Equipment and Accessories
	8.7 Testing Program
	8.8 Observation Data Sheet and Analysis
	8.9 Results and Discussions
	8.10 General Comments
	8.11 Applications/Role of Relative Density in Soil Engineering
	8.12 Sources of Error
	8.13 Precautions
	References
9. Compaction Characteristics of a Soil Specimen
	9.1 Objectives
	9.2 Introduction
	9.3 Definitions and Theory
		9.3.1 Zero Air Curve and Theoretical Dry Density
	9.4 Method of Testing
	9.5 Soil Testing Material
	9.6 Testing Equipment and Accessories
	9.7 Testing Program
	9.8 Observation Data Sheet and Analysis
	9.9 Results and Discussions
	9.10 General Comments
		9.10.1 Why (OMC) Against (MDD)?
		9.10.2 Other Important Comments
	9.11 Applications
	9.12 Sources of Error
	9.13 Precautions
	References
10. Coefficient of Permeability or Hydraulic Conductivity of Soils
	10.1 Objectives
	10.2 Definitions and Theory
	10.3 Method of Testing
	10.4 Soil Testing Material—Preparation of Soil Specimen
		10.4.1 Preparation of Undisturbed Soil Specimens
		10.4.2 Preparation of Remolded Soil Specimens
		10.4.3 Preparation of Reconstituted Soil Specimens
	10.5 Testing Equipment and Accessories (for both test methods)
	10.6 Testing Program
		10.6.1 Coefficient of Permeability of Soil by Constant Head Test Method
			10.6.1.1 Observation Data Sheet and Analysis
			10.6.1.2 Results and Discussions
		10.6.2 Coefficient of Permeability of Soils by Falling Head Test Method
			10.6.2.1 Observation Data Sheet and Analysis
			10.6.2.2 Results and Discussions
	10.7 General Comments
		10.7.1 Additional Comments
	10.8 Applications
	10.9 Sources of Error
	10.10 Precautions
	References
11. Consolidation Test of a Soil Sample
	11.1 Objective
	11.2 Definitions and Theory
		11.2.1 Compression of Soils Due to Expulsion of Water: Volume Change Behavior in Soils
		11.2.2 Consolidation: Time-Dependent Load-Deformation Process
		11.2.3 Consolidation Parameters
			11.2.3.1 Compression Index: Cc
			11.2.3.2 Re-Compression/Swelling Index: Cr or Cs
			11.2.3.3 Initial Void Ratio (eo)
			11.2.3.4 Coefficient of Compressibility: av
			11.2.3.5 Modulus of Volume Change: mv
			11.2.3.6 Preconsolidation Pressure: p′c
			11.2.3.7 Coefficient of Consolidation (1-D vertical): Cv or (radial: Ch or Cr)
			11.2.3.8 Coefficient of Permeability: k
			11.2.3.9 Settlement
			11.2.3.10 Field Consolidation Curve
	11.3 Method of Testing
		11.3.1 Pre-Requisite for One-Dimensional Consolidation Test
		11.3.2 Soil Testing Material
		11.3.3 Size and Preparation of Soil Specimen
	11.4 Testing Equipment and Accessories
	11.5 Testing Program
	11.6 Observation Data Sheet and Analysis
		11.6.1 Compressibility Parameters (CC, e, pc) by Height of Solids Method
		11.6.2 Determination of Void Ratio, Comp. Index, and Preconsolidation Pressure by Change in Void Ratio Method
		11.6.3 Determination of Coeff. of Vertical Consolidation (Cv)
			11.6.3.1 Taylor's Root of Time Fitting Method
			11.6.3.2 Casagrande's Log Time Fitting Method
			11.6.3.3 Rectangular Hyperbola Method (1987)
		11.6.4 Determination of Coefficient of Permeability (k)
	11.7 General Comments
	11.8 Applications/Role of Consolidation Parameters in Soil Engineering
		11.8.1 Types of Settlement—Based on Mode of Occurrence, Various Types of Settlements
	11.9 Sources of Error
	11.10 Precautions
	References
12. Unconfined Compression Strength of Soils
	12.1 Objectives
	12.2 Definitions and Theory
		12.2.1 Principle of "UCS" Test
	12.3 Method of Testing
		12.3.1 Pre-Requisite for Unconfined Compression Strength (UCS) Test
		12.3.2 Soil Testing Material
		12.3.3 Size and Preparation of Soil Specimen
	12.4 Testing Equipment and Accessories
	12.5 Testing Program
	12.6 Observation Data Sheet and Analysis
		12.6.1 Determination of Water Content and Dry Unit Weight
		12.6.2 Determination of Undrained Shear Strength by "UC" Test
		12.7 General Comments
	12.8 Applications/Role of "UCS" in Soil Engineering
	12.9 Sources of Error
	12.10 Precautions
	References
13. Vane Shear Test for Cohesive Soils
	13.1 Objective
	13.2 Definitions and Theory
	13.3 Method of Testing
		13.3.1 Pre-Requisite for VST
		13.3.2 Soil Testing Material
	13.4 Testing Equipment and Material
	13.5 Testing Program
	13.6 Observation Data Sheet and Analysis
	13.7 General Comments
		13.7.1 Other Allied Methods for Determining Undrained Shear Strength
	13.8 Applications/Role of "VST" in Soil Engineering
	13.9 Sources of Error
	13.10 Precautions
	References
14. Direct Shear Test (DST) for Soils
	14.1 Objectives
	14.2 Definitions and Theory
		14.2.1 Drained and Undrained Conditions Soil Tests
		14.2.2 Shear Strength in Undrained or Drained Condition?
		14.2.3 Strain-Controlled Tests
		14.2.4 Principle of the Direct Shear Test
	14.3 Method of Testing
		14.3.1 Pre-Requisite for Direct Shear Test (DST)
		14.3.2 Soil Testing Material
		14.3.3 Size of Specimen
	14.4 Testing Equipment and Accessories
	€14.5 Testing Program
		14.5.1 Sandy Soil or Cohesionless Soil
		14.5.2 Cohesive Soil or Clayey Soil
	14.6 Observation Data Sheet and Analysis
		14.6.1 Determination of Water Content and Dry Unit Weight
		14.6.2 Determination Undrained Shear Strength by "DST" Test
	14.7 Results and Discussions
	14.8 General Comments
	14.9 Applications/Role of "DST" in Soil Engineering
	14.10 Sources of Error
	14.11 Precautions
	References
15. Shear Strength of Soils by Triaxial Test
	15.1 Objectives
	15.2 Definitions and Theory
		15.2.1 Why Conduct a Triaxial Test?
		15.2.2 Basic Principle of a Triaxial Compression Test?
		15.2.3 Drainage Boundary Conditions in Triaxial Compression Tests
		15.2.4 Skempton's Pore Pressure Parameters
		15.2.4.1 Pore Pressure Parameter: B-factor
		15.2.4.2 Pore Pressure Parameter: A-factor
		15.2.5 Loading Conditions in Triaxial Tests
	15.3 Method of Testing
		15.3.1 Pre-Requisite for Triaxial Compression Test
		15.3.2 Size of Soil Particles in a Soil Specimen
		15.3.3 Preparation of Soil Specimen
	15.4 Testing Equipment and Accessories
	15.5 Testing Program
		15.5.1 Unconsolidated Undrained (UU) or Unconsolidated Quick (QU) Test without Pore Water Pressure Measurement
			15.5.1.1 Preparation of Soil Specimen
			15.5.1.2 Triaxial Saturation Stage for "UU" Test (application of cell pressure)
		15.5.2 Triaxial Shearing Stage for "UU" Test (application of deviator stress)
			15.5.2.1 Observation Data Sheet and Analysis for "UU" Triaxial Shear Test
		15.5.3 Results and Discussions: UU Test
		15.5.4 Applications/Role/Significance of and Use of "UU" Test
	15.6 Consolidated Undrained (CU or Qc) Triaxial Test
		15.6.1 Triaxial Saturation Stage in "CU" Test
		15.6.2 Triaxial Consolidation Stage in "CU" Test
			15.6.2.1 Observation Data Sheet and Analysis for "CU" Triaxial Consolidation Test
		15.6.3 Shearing Stage for "CU" Test
			15.6.3.1 Typical Results of CU Triaxial Tests
		15.6.4 Applications/Role/Significance of and Use of "CU" Test
	15.7 Consolidated Drained Test (CD or S) Triaxial Test
		15.7.1 Triaxial Saturation Stage in "CD" Test
		15.7.2 Triaxial Consolidation Stage in "CD" Test
		15.7.3 Triaxial Shear Stage in "CD" Test
			15.7.3.1 Typical Results of Triaxial "CD" Tests
		15.7.4 Applications/Role/Significance of and Use of "CD" Test
	15.8 General Comments
		15.8.1 Some Comments on the Influence of the Type of Test
		15.8.2 Effects of Accelerating Tests
	15.9 Statement of Strength Principles
	15.10 Sources of Error
	15.11 Precautions
	References
Index




نظرات کاربران