دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Oswald Campesato
سری:
ISBN (شابک) : 9781683929529, 2022952302
ناشر: Mercury Learning and Information
سال نشر: 2023
تعداد صفحات: 387
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Managing Datasets and Models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت مجموعه داده ها و مدل ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Half-Title Page Title Page Copyright Page Dedication Contents Preface Chapter 1: Working with Data Import Statements for this Chapter Exploratory Data Analysis (EDA) Dealing with Data: What Can Go Wrong? Analyzing Missing Data Explanation of Data Types Data Preprocessing Working with Data Types What is Drift? What is Data Leakage? Model Selection and Preparing Datasets Types of Dependencies Among Features Data Cleaning and Imputation Summary Chapter 2: Outlier and Anomaly Detection Import Statements for this Chapter Working with Outliers Finding Outliers with NumPy Finding Outliers with Pandas Finding Outliers with Scikit-Learn (Optional) Fraud Detection Techniques for Anomaly Detection Working with Imbalanced Datasets Summary Reference Chapter 3: Cleaning Datasets Prerequisites for this Chapter Analyzing Missing Data Pandas, CSV Files, and Missing Data Missing Data and Imputation Skewed Datasets CSV Files with Multi-Row Records Column Subset and Row Subrange of Titanic CSV File Data Normalization Handling Categorical Data Working with Currency Working with Dates Working with Quoted Fields What is SMOTE? Data Wrangling Summary Chapter 4: Working with Models Import Statements for this Chapter Techniques for Scaling Data Examples of Splitting and Scaling Data The Confusion Matrix The ROC Curve and AUC Curve Exploring the Titanic Dataset Steps for Training Classifiers Diagram for Partitioned Datasets A KNN-Based Model with the wine.csv Dataset Other Models with the wine.csv Dataset A KNN-Based Model with the bmi.csv Dataset A KNN-Based Model with the Diabetes.csv Dataset SMOTE and the Titanic Dataset EDA and Data Visualization What about Regression and Clustering? Feature Importance What is Feature Engineering? What is Feature Selection? What is Feature Extraction? Data Cleaning and Machine Learning Summary Chapter 5: Matplotlib and Seaborn Import Statements for this Chapter What is Data Visualization? What is Matplotlib? Matplotlib Styles Display Attribute Values Color Values in Matplotlib Cubed Numbers in Matplotlib Horizontal Lines in Matplotlib Slanted Lines in Matplotlib Parallel Slanted Lines in Matplotlib Lines and Labeled Vertices in Matplotlib A Dotted Grid in Matplotlib Lines in a Grid in Matplotlib Two Lines and a Legend in Matplotlib Loading Images in Matplotlib A Checkerboard in Matplotlib Randomized Data Points in Matplotlib A Set of Line Segments in Matplotlib Plotting Multiple Lines in Matplotlib Trigonometric Functions in Matplotlib A Histogram in Matplotlib Histogram with Data from a Sqlite3 Table Plot a Best-Fitting Line with ggplot Plot Bar Charts Plot a Pie Chart Heat Maps Save Plot as a PNG File Working with SweetViz Working with Skimpy 3D Charts in Matplotlib Plotting Financial Data with Mplfinance Charts and Graphs with Data from Sqlite3 Working with Seaborn Seaborn Dataset Names Seaborn Built-In Datasets The Iris Dataset in Seaborn The Titanic Dataset in Seaborn Extracting Data from Titanic Dataset in Seaborn (1) Extracting Data from Titanic Dataset in Seaborn (2) Visualizing a Pandas Data Frame in Seaborn Seaborn Heat Maps Seaborn Pair Plots What is Bokeh? Introduction to Scikit-Learn The Digits Dataset in Scikit-Learn The Iris Dataset in Scikit-Learn (1) The Iris Dataset in Scikit-Learn (2) Advanced Topics in Seaborn Summary Appendix: Working with awk The awk Command Aligning Text with the printf() Statement Conditional Logic and Control Statements Deleting Alternate Lines in Datasets Merging Lines in Datasets Matching with Metacharacters and Character Sets Printing Lines Using Conditional Logic Splitting File Names with awk Working with Postfix Arithmetic Operators Numeric Functions in awk One-Line awk Commands Useful Short awk Scripts Printing the Words in a Text String in awk Count Occurrences of a String in Specific Rows Printing a String in a Fixed Number of Columns Printing a Dataset in a Fixed Number of Columns Aligning Columns in Datasets Aligning Columns and Multiple Rows in Datasets Removing a Column from a Text File Subsets of Column-Aligned Rows in Datasets Counting Word Frequency in Datasets Displaying Only “Pure” Words in a Dataset Working with Multi-Line Records in awk A Simple Use Case Another Use Case Summary Index