دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Sijo J. Parekattil, Sandro C. Esteves, Ashok Agarwal سری: ISBN (شابک) : 3030322998, 9783030322991 ناشر: Springer سال نشر: 2020 تعداد صفحات: 941 [895] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 Mb
در صورت تبدیل فایل کتاب Male Infertility: Contemporary Clinical Approaches, Andrology, ART and Antioxidants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ناباروری مردان: رویکردهای بالینی معاصر، آندرولوژی، ART و آنتی اکسیدان ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی که اکنون در ویرایش دوم بازنگری شده و توسعه
یافته، کمکی اساسی به ادبیات است، مروری جامع از تکنیک های تشخیصی
و درمانی برای ناباروری مردان ارائه می دهد. این کتاب درسی
پیشرفته و مبتنی بر شواهد، رویکردهای جدید پزشکی چند رشتهای و
مکمل را برای ایجاد اولین راهنمای در نوع خود برای استراتژیهای
درمان ناباروری مردانه و فراتر از آن، ترکیب میکند. در حالی که
این نسخه جدید در درجه اول به عنوان مرجعی برای دانشجویان و
دستیاران در پزشکی تولید مثل و آندرولوژی طراحی شده است، به همان
اندازه برای متخصصان اورولوژی، غدد درون ریز تولید مثل، جنین
شناسی، و زمینه های تحقیقاتی که به نقش آنتی اکسیدان ها در ایفا
می کنند مفید خواهد بود. ناباروری مردان.
متخصصان مطرح دنیا در این زمینه ها برای شرکت در این کار انتخاب
شده اند. انتخاب دقیق محتوای با بالاترین کیفیت، طیف وسیعی از
موضوعات در زمینه ناباروری مردان را در بر می گیرد و مروری کامل
بر تکنیک های تشخیصی و درمانی شناخته شده و رایج برای ناباروری
مردان ارائه می دهد. گنجاندن 20 فصل جدید با گنجاندن جدیدترین
پیشرفتهای حاصل شده در عرصه ناباروری مردان، جذابیت کتاب را
افزایش میدهد. علاوه بر این، این نسخه دارای ویژگیهای جدید، از
جمله نکات کلیدی، معیارهای بررسی و انتخاب کلیپهای ویدیویی است
که برخی از جذابترین روشهای درمان ناباروری مردان را نشان
میدهد. بخش جدید اختصاصی در دستورالعملهای جاری در مورد
ناباروری مردان، خوانندگان را در مورد چگونگی مدیریت بهینه
سناریوهای بالینی ناباروری مردان روشن میکند. پوشش تمام جنبه های
تشخیص و مدیریت، ART، عوامل سبک زندگی و شرایط مرتبط با ناباروری
مردان، ناباروری مردانه: رویکردهای بالینی معاصر،
آندرولوژی، ART و آنتی اکسیدان ها به راحتی قابل
دسترسی خواهد بود. مرجع با کیفیت بالا برای دانشجویان و دستیاران
پزشکی، و برای متخصصانی که در زمینههای مختلف این عارضه را درمان
میکنند نیز ارزش قابل توجهی خواهد داشت.
A groundbreaking contribution to the literature now in
its revised and expanded second edition, this textbook offers a
comprehensive review of diagnostic and treatment techniques for
male infertility. This state-of-the-art, evidence-based
textbook incorporates new multidisciplinary and complementary
medicine approaches to create a first-of-its-kind guide to
treatment strategies for male infertility and beyond. While
this new edition is primarily designed as a reference for
students and residents in reproductive medicine and andrology,
it will be equally useful as well for professionals in urology,
reproductive endocrinology, embryology, and research fields who
are interested in the role that antioxidants play in male
infertility.
World-renowned experts in these areas have been selected to
participate in this work. Careful selection of the highest
quality content will span the whole range of topics in the area
of male infertility, providing a complete review of
well-established and current diagnostic and treatment
techniques for male infertility. The incorporation of 20 new
chapters will enhance the book’s appeal by including the most
recent advances brought to the male infertility arena.
Additionally, this edition incorporates new features, including
bulleted key points, review criteria and select video clips
demonstrating some of the most fascinating male infertility
treatment modalities. A dedicated new section on current
guidelines on male infertility will enlighten readers on how to
most optimally manage male infertility clinical
scenarios. Covering all aspects of diagnosis and
management, ART, lifestyle factors and associated conditions
for male infertility, Male Infertility:
Contemporary Clinical Approaches, Andrology, ART and
Antioxidants will be a readily accessible, high
quality reference for medical students and residents, and
will be of significant value to professionals working in the
various fields treating this condition as well.
Foreword Preface About the Editors Contents Contributors Part I: Male Infertility Diagnosis and Management 1: Causes of Male Infertility 1.1 Introduction 1.2 Causes of Male Infertility 1.2.1 Pre-testicular 1.2.1.1 Hypogonadotropic Hypogonadism 1.2.1.2 Elevated Prolactin 1.2.1.3 Pharmacologic 1.2.1.4 Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome 1.2.1.5 Testicular Varicocele Cryptorchidism Testicular Cancer 1.2.1.6 Ionizing Radiation 1.2.1.7 Chemotherapy 1.2.1.8 Genetic Azoospermia/Oligospermia 1.2.1.9 Lifestyle Factors 1.2.1.10 Testicular Injury 1.2.1.11 Primary Ciliary Dyskinesia 1.2.1.12 Antisperm Antibodies 1.2.2 Post-testicular 1.2.2.1 Absence of the Vas Deferens 1.2.2.2 Young’s Syndrome 1.2.2.3 EjDO/Seminal Vesicle Dysfunction 1.2.2.4 Nerve Injury 1.2.2.5 Medications 1.2.2.6 Coital 1.3 Conclusion 1.4 Review Criteria References Notable Suggested Readings from the Last 5 Years 2: Epidemiologic Considerations in Male Infertility 2.1 Introduction 2.2 Epidemiology of Infertility 2.2.1 Incidence and Prevalence of Infertility in Developed Countries 2.2.2 Infertility in the Developing World 2.2.3 Reproduction—a Matter of Chance: The Natural History of Infertility 2.3 Diagnostic Accuracy and Utility of Semen Studies 2.3.1 Relationship Between Semen Parameters and Male Infertility 2.3.2 Do Semen Parameters Prospectively Predict Fertility and Assisted Reproductive Technique Outcomes? 2.3.3 Novel Assays for Diagnosis of Male Infertility 2.4 Are Sperm Counts Declining? 2.5 Health-Care Resource Utilization for Male Infertility 2.5.1 Office Visits and Ambulatory Surgery Cases 2.5.2 Assisted Reproductive Technology 2.5.3 Cost of Treatment for Male Infertility 2.6 Cost Analysis Models for Management of Male Infertility 2.7 Conclusion 2.8 Review Criteria References 3: Laboratory Evidence for Male Infertility 3.1 Introduction 3.2 WHO Guidelines for Assessment of Semen Specimen 3.3 Laboratory Evaluation of Male Factor Infertility 3.3.1 Basic Semen Analysis 3.3.1.1 Collection 3.3.1.2 Volume 3.3.1.3 Liquefaction and Viscosity 3.3.1.4 pH [normal > 7.2] 3.3.1.5 Concentration 3.3.1.6 Motility 3.3.1.7 Morphology 3.3.1.8 Agglutination 3.3.1.9 Leukocytospermia 3.4 Retrograde or Post-Ejaculatory Urinalysis (PEUA) 3.5 Reactive Oxygen Species (ROS) Testing 3.6 Acrosome Reaction Testing 3.7 Antisperm Antibody (ASA) Testing 3.8 Sperm Viability Testing 3.9 Advanced Semen Testing 3.9.1 Sperm DNA Fragmentation (SDF) 3.9.2 Sperm Chromatin Structure Assay (SCSA) 3.9.3 Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) 3.9.4 Single-Cell Gel Electrophoresis Assay (Comet) 3.9.5 Sperm Chromatin Dispersion (SCD) 3.9.6 Endocrine Evaluation 3.9.7 Genetic Evaluation 3.9.8 Conclusion 3.10 Review Criteria References 4: Imaging Modalities in the Management of Male Infertility 4.1 Introduction 4.2 Testicular Tissue Imaging for Guided Sperm Retrieval 4.2.1 Doppler Duplex Flow Imaging 4.2.2 MRI Spectral Imaging 4.2.3 Testicular Artery Mapping During Varicocelectomy 4.3 Management of Testicular Lesions in Infertile Patients 4.3.1 Organ-Sparing Microsurgical Resection of Testicular Tumors in Infertile Patients 4.3.2 Testicular Microlithiasis 4.3.3 Seminal Vesicle and Ejaculatory Duct Imaging 4.4 Conclusion 4.5 Review Criteria References 5: Endocrinopathies 5.1 Introduction 5.2 Hormonal Deficiency 5.2.1 Hypogonadotropic Hypogonadism 5.2.2 Hypergonadotropic Hypogonadism 5.2.3 Hypothyroidism 5.3 Hormonal Excess 5.3.1 Androgen Excess 5.3.2 Estrogen Excess 5.3.3 Thyroid Excess 5.3.4 Prolactin Excess 5.4 Conclusion 5.5 Review Criteria References 6: Oxidative Stress and Its Association with Male Infertility 6.1 Introduction 6.2 Biochemistry of Oxidative Stress 6.3 Sources of ROS in Male Reproductive Tract 6.3.1 Endogenous Sources 6.3.1.1 Leukocytes 6.3.1.2 Immature Spermatozoa 6.3.1.3 Infections, Autoimmune/Inflammatory Conditions Genitourinary Tract Infection Systemic Infection Autoimmune/Inflammatory Condition 6.3.1.4 Varicocele and Cryptorchidism 6.3.1.5 Other Chronic Diseases 6.3.2 Exogenous Sources 6.3.2.1 Radiation 6.3.2.2 Lifestyle Factors 6.3.2.3 Toxins 6.4 Physiological Role of ROS 6.4.1 Capacitation 6.4.2 Hyperactivation 6.4.3 Acrosome Reaction 6.4.4 Fertilization 6.5 Mechanisms of ROS-Mediated Male Infertility 6.5.1 Lipid Peroxidation 6.5.2 Sperm DNA Fragmentation 6.5.3 Apoptosis of Spermatozoa 6.6 ROS in Assisted Reproduction 6.7 Measurement of OS 6.7.1 Assessment of Sperm OS from Routine Semen Analysis 6.7.2 Total Antioxidant Capacity (TAC) 6.7.3 Lipid Peroxidation Markers 6.7.4 Seminal Oxidation-Reduction Potential (ORP) 6.7.5 Direct Laboratory Assessments of OS 6.8 Management of OS-Associated Male Infertility 6.8.1 Lifestyle Management Approach 6.8.2 Vitamin and Antioxidant Supplementation 6.8.3 Surgery 6.9 Conclusion 6.10 Review Criteria References 7: Oxidative Stress Measurement in Semen and Seminal Plasma 7.1 Introduction 7.2 Seminal Reactive Oxygen Species and Antioxidants: Physiological and Pathological Roles 7.2.1 Physiological Roles 7.2.2 Pathological ROS and Oxidative Stress 7.2.3 Oxidative Stress and Male Infertility 7.2.4 Types of Samples for Oxidative Stress Measurement 7.2.5 Markers of Oxidative Stress and their Assessment 7.3 Common Methods to Measure Oxidative Stress 7.3.1 Nitroblue Tetrazolium Test 7.3.2 Chemiluminescence Assay 7.3.3 Factors Affecting the ROS Measurement 7.3.4 Measurement of Intracellular ROS 7.3.5 Measurement of DNA Fragmentation 7.3.6 Sperm Chromatin Structure Assay (SCSA) 7.3.7 Terminal Deoxynucleotidyl Transferees dUTP Nick End Labeling (TUNEL) Assay 7.3.8 Epifluorescence Using Acridine Orange Dye 7.3.9 Comet Assay 7.3.10 Sperm Chromatin Dispersion (SCD) Assay 7.4 Measurement of Total Antioxidant Capacity 7.4.1 Colorimetric Analysis 7.4.2 ROS-TAC Score 7.5 Measurement of Lipid Peroxidation 7.5.1 TBARS Assay 7.5.2 4-Hydroxynonenal-Histidine Adduct ELISA Assay 7.5.3 Isprostane (IsoP) Method 7.6 Measurement of ROS-Induced Post-translational Modifications 7.7 Measurement of ROS-Induced Protein Alterations: Proteomic Analysis 7.8 Limitations of Current Oxidative Stress Markers 7.9 What Is Oxidation Reduction Potential? 7.9.1 Measurement of Oxidation Reduction Potential Using MiOXSYS 7.9.2 Protocol to Measure Oxidation Reduction Potential 7.9.3 Value of ORP in Fresh and Frozen Semen Samples and Seminal Plasma 7.9.4 Assessment of Semen Quality and Fertility Status Using Oxidation Reduction Potential 7.9.5 Oxidative Reduction Potential: Establishing Reference Values 7.9.6 Update on Research on Oxidative Reduction Potential: Multicenter Findings 7.9.7 Clinical Utility of Oxidation Reduction Potential in Male Infertility 7.9.8 Oxidation Reduction Potential: A Test Replacement or a Test in Conjunction with Semen Analysis? 7.9.9 Clinical Relevance of Combination of OS Markers and Other Sperm Function Tests 7.10 Future Directions 7.11 Conclusions 7.12 Review Criteria References 8: Sperm Chromatin Integrity Tests and Indications 8.1 Introduction 8.2 Limitation of Semen Analysis 8.3 Sperm DNA Integrity 8.4 Indications and Importance of Sperm DNA Integrity in Male Infertility 8.5 Clinical Relevance of DNA Integrity with ART Outcomes 8.6 Contemporary Sperm Chromatin Integrity Tests 8.6.1 Aniline Blue Staining 8.6.2 Toluidine Blue Staining 8.6.3 CMA 3 Assay 8.6.4 Acridine Orange 8.6.5 Sperm Chromatin Structure Assay 8.6.6 Measurement of 8-Hydroxy-2-Deoxyguanosine (8-OHdG) 8.6.7 Comet Assay 8.6.8 Sperm Chromatin Dispersion Test (Halosperm Assay) 8.6.9 Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay 8.7 Limitations of Current Protocols 8.8 Controversies of Sperm DNA Fragmentation 8.9 Common Laboratory Protocols for Measuring DNA Fragmentation by TUNEL and Flow Cytometry (Direct and Indirect Methods) 8.10 Challenges Using Indirect Assays to Measure DNA Integrity by TUNEL Assay 8.11 Common Direct Methods to Measure DNA Integrity 8.12 Current Challenges in Sperm Chromatin Integrity Tests 8.13 Future Direction 8.14 Conclusion 8.15 Review Criteria References 9: Proteomic and Metabolomic Fingerprinting in Male Infertility 9.1 Introduction 9.2 Proteomics in Male Infertility 9.2.1 General Approach to Proteomics 9.2.2 Assessment of Sperm and Seminal Plasma: Methods and Tools, Analysis, Bioinformatics 9.2.3 Sperm Proteomics 9.2.4 Seminal Plasma Proteomics 9.3 Metabolomics in Male Infertility 9.3.1 General Approach to Metabolomics 9.3.2 Analysis of the Metabolome 9.3.3 Sperm Metabolomics 9.3.4 Seminal Plasma Metabolomics 9.3.5 Urine Metabolomics 9.3.6 Testicular Tissue Metabolomics 9.4 Potential Biomarkers of Male Infertility 9.5 Current Challenges and Future Outlook 9.6 Conclusion 9.7 Review Criteria References 10: Epigenetics and Male Infertility 10.1 Introduction 10.1.1 Definition of Epigenetics 10.1.2 History of Epigenetics 10.2 Epigenetics Mechanisms 10.2.1 DNA Methylation 10.2.2 Chromatin Remodeling 10.2.3 Histone Modification 10.2.4 Non-coding RNA 10.2.5 Genomic Imprinting 10.3 Sperm Epigenetics 10.3.1 Current Technology Used to Evaluate Sperm Epigenetics 10.3.2 Value of Sperm Epigenetics to the Male Infertility Evaluation 10.3.3 Sperm Epigenetic–Fertility Phenotypes 10.3.3.1 Abnormal Semen Analysis 10.3.3.2 Unexplained Infertility 10.3.3.3 Embryo Development and Miscarriage 10.3.4 Sperm Epigenetics and Paternal Age 10.3.5 Lifestyle and Environmental Influences on Sperm Epigenetics 10.3.6 The Hereditability of Sperm Epigenetics 10.4 Conclusion 10.5 Review Criteria References 11: Genetic Aspects of Male Infertility 11.1 Introduction 11.2 Genomic Regulation of Male Sexual Development 11.2.1 Testicular Development 11.2.2 Testicular Descent 11.2.3 Spermatogenesis 11.2.4 Male Genital Tract Development 11.2.5 Male External Genitalia Development 11.3 Genetic Defects Associated with Male Infertility 11.3.1 Numerical and Structural Chromosomal Abnormalities 11.4 Klinefelter Syndrome 11.5 XYY Syndrome 11.6 XX Male Syndrome 11.7 Mixed Gonadal Dysgenesis 11.8 Translocations and Inversions 11.9 Y Chromosome 11.10 AZF Region 11.10.1 AZFa 11.10.2 AZFb 11.10.3 AZFc 11.11 Yq Microdeletions in Clinical Practice 11.12 Other Y Chromosome Conditions 11.13 X Chromosome 11.13.1 Congenital Bilateral Absence of the Vas Deferens (CBAVD) and Cystic Fibrosis 11.13.2 Genes Involved in Meiotic Recombination 11.13.3 Gene Mutations Associated with Sperm Functional Defects 11.13.4 Copy Number Variations (CNVs) 11.14 Mitochondrial Genetics 11.15 Epigenetic Alterations 11.16 Malignancy Risks Associated with Genetic Perturbations in Infertile Men 11.17 Male Genetic Testing in Clinical Practice 11.18 Gene Therapy for Male Infertility 11.19 Conclusion 11.20 Review Criteria References 12: Surgical Treatment for Male Infertility 12.1 Introduction 12.2 Surgical Treatment 12.2.1 Varicocele Repair 12.2.1.1 Indications 12.2.1.2 Preoperative Planning Patient Evaluation 12.2.1.3 Operative Aspects Anesthesia Techniques 12.2.1.4 Postoperative Care Semen Improvement Results Fertility Results 12.2.2 Reconstructive Surgery of the Vas Deferens and Epididymis 12.2.2.1 Indications 12.2.2.2 Preoperative Planning Patient Evaluation 12.2.2.3 Operative Aspects Anesthesia Incision Approaching the Vas Vasal Fluid Examination Vasovasostomy Techniques Vasoepididymostomy Techniques 12.2.2.4 Postoperative Care Results 12.2.3 Transurethral Resection of the Ejaculatory Duct 12.2.3.1 Indications 12.2.3.2 Preoperative Planning Patient Evaluation 12.2.3.3 Operative Aspects Anesthesia Technique 12.2.3.4 Postoperative Care Results 12.3 Conclusions 12.4 Review Criteria References 13: Microsurgery for Male Infertility 13.1 Introduction 13.2 Etiology and Evaluation 13.2.1 Reconstruction Versus Sperm Retrieval and In Vitro Fertilization/Intracytoplasmic Sperm Injection (IVF/ICSI) 13.3 Microsurgical Procedures 13.4 Vaso-epididymal Anastomosis 13.5 Our Surgical Technique 13.6 Outcomes 13.7 Vasovasal Anastomosis 13.8 Our Surgical Technique 13.9 Outcomes 13.10 Microsurgical Varicocelectomy 13.11 Our Surgical Technique 13.12 Outcomes 13.13 Training and Credentials 13.14 Conclusions 13.15 Review Criteria References 14: Advanced Techniques of Vasoepididymostomy 14.1 Introduction 14.2 Vasoepididymostomy 14.3 End-to-End Anastomosis 14.4 End-to-Side Techniques 14.5 Anastomotic Technique 14.6 Original End-to-Side 14.7 End-to-Side Intussusception Technique 14.8 Two-Stitch Longitudinal Vasoepididymostomy (LIVE Technique) 14.9 Techniques When Vasal Length Is Severely Compromised 14.10 Long-Term Follow-Up Evaluation and Results 14.11 Conclusion 14.12 Review Criteria References 15: Grafting Techniques for Vasectomy Reversal 15.1 Introduction 15.2 Grafting Techniques in Reconstruction of the Male Reproductive Tract 15.2.1 Stents 15.2.2 Conduits 15.2.3 Autografts 15.3 Conclusions 15.4 Review Criteria References 16: Mini-incision Vasectomy Reversal Using the No-Scalpel Vasectomy Instruments and Principles 16.1 Introduction 16.2 History 16.3 Vasectomy Reversal Techniques 16.4 Mini-incision Vasectomy Reversal (MIVR) 16.5 Technique of Mini-incision Vasectomy Reversal 16.6 Outcome of Mini-incision Vasectomy Reversal 16.7 Single Mini-incision Vasectomy Reversal (SMIVR) 16.8 Conclusion References 17: Office-Based Microsurgery Under Local Anesthesia for Male Infertility 17.1 Introduction 17.2 Clinical Setup 17.2.1 Procedure Suite 17.2.2 Pain Control 17.3 Technical Description of Procedures 17.3.1 TESE 17.3.2 MESA 17.3.3 Varicocelectomy 17.3.4 Vasectomy Reversal 17.4 Tips and Tricks to Overcoming the Learning Curve 17.5 Financial Considerations 17.6 Conclusions 17.7 Review Criteria References 18: Robotic Microsurgery for Male Infertility and Chronic Orchialgia 18.1 Introduction 18.2 Novel Equipment 18.3 New Robotic Surgical Platform 18.4 Refined Robotic Doppler Flow Probe 18.5 Enhanced Digital Visual Magnification 18.6 Robotic Microsurgical Procedures 18.6.1 Robotic-Assisted Microscopic Vasectomy Reversal 18.6.2 Robotic-Assisted Microscopic Varicocelectomy 18.6.3 Robotic-Assisted Microscopic Denervation of the Spermatic Cord 18.7 Single Port and Abdominal Robotic Microsurgical Neurolysis 18.8 Conclusion 18.9 Review Criteria References 19: Robotic Vasectomy Reversal: An American Perspective 19.1 Introduction 19.2 History of Robotics in Surgery 19.3 Da Vinci® Robotic System 19.4 Technology Hype (Gartner-Palmer Tech Hype Curve) 19.5 Anatomy 19.6 Preoperative Evaluation/Physical Examination 19.7 Preoperative Laboratory Testing 19.8 Anesthesia 19.9 Positioning the Patient and the Robot 19.10 Incision Approaches 19.11 Vas Deferens Preparation 19.12 Technical Aspects of Anastomosis 19.13 The Da Vinci® Robotic Platform to Assist with Microsurgical Vasectomy Reversal 19.14 Robot-Assisted Vasectomy Reversal 19.15 Robot-Assisted Microsurgical Vasovasostomy 19.16 Robot-Assisted Microsurgical Vasoepididymostomy 19.17 Robot-Assisted Microsurgical Vasectomy Reversal Learning Curve 19.18 Future of Evolution of Robot-Assisted Microsurgical Vasectomy Reversal 19.19 Postoperative Care 19.20 Complications 19.21 Conclusions 19.22 Review Criteria References 20: Robot-Assisted Vasectomy Reversal (Vasovasostomy) 20.1 Introduction 20.2 Robot-Assisted Vasectomy Reversal 20.3 Surgical Technique 20.4 Outcome 20.5 Costs 20.6 Conclusion 20.7 Review Criteria References 21: Robotic-Assisted Varicocelectomy 21.1 Introduction 21.2 Materials and Methods 21.3 Results 21.4 Discussion 21.5 Conclusion 21.6 Review Criteria References 22: Management of Fertility Preservation in Male Cancer Patients 22.1 Introduction 22.2 Incidence of Cancer 22.3 Quality of Life Concerns and Reproductive Aspirations in Men with Cancer 22.4 Cancer in Children and Adolescents 22.5 Impact of Cancer Therapies on Male Fertility Potential 22.5.1 Radiation Therapy 22.5.2 Chemotherapy 22.5.3 Surgery 22.5.4 Immunotherapy and Other Modalities 22.6 Fertility Preservation Counseling for Men, Couples, or Family 22.7 Sperm Parameters and Semen Quality in Men with Cancer 22.8 Semen Collection for Male Cancer Patients 22.9 Techniques for Sperm Cryopreservation 22.9.1 Sperm Preparation Prior to Cryopreservation 22.9.2 Slow Freezing 22.10 Rapid Freezing 22.11 Sperm Vitrification 22.12 Options for Home Banking: An Innovation-Based Approach 22.13 Cryopreservation of Epididymal or Testicular Tissue: Indications and Techniques 22.14 Fertility Preservation in Prepubertal Boys: Experimental Techniques with IRB Guidelines 22.15 Sperm Quality After Cryopreservation 22.16 Procedure for Post-thaw Sperm Preparation 22.17 Number of Ejaculates Stored Prior to Use of Cryopreserved Sperm 22.18 ART Outcomes in Cryopreserved Sperm 22.19 Utilization of Cryopreserved Samples 22.20 Challenges, Barriers, and Safety Issues of Sperm Cryopreservation 22.21 Factors Preventing Individuals from Banking 22.22 Counseling and Ethical Considerations 22.23 Cost-Effectiveness of Fertility Preservation in the ART Era 22.24 Future Research Strategies 22.25 Conclusion 22.26 Review Criteria References 23: Clinical Management of Men with Nonobstructive Azoospermia due to Spermatogenic Failure 23.1 Introduction 23.2 Step 1: Confirm the Diagnosis of NOA due to Spermatogenic Failure 23.2.1 Semen Analysis 23.2.2 Medical History 23.2.3 Physical Examination 23.2.4 Endocrine Profile 23.2.5 Hypogonadotropic Hypogonadism 23.2.6 Testis Biopsy 23.3 Step 2: Define Who Are Possible Candidates for Sperm Retrieval 23.4 Step 3: Define Who Can Benefit from Interventions Before Sperm Retrieval 23.4.1 Medical Therapy 23.4.2 Varicocele Repair 23.5 Step 4: Use the Optimal Method for Harvesting Testicular Sperm 23.6 Step 5: Laboratory Handling of Testicular Sperm 23.7 Outcomes of ICSI 23.8 Complete Aspermatogenesis 23.9 Conclusions 23.10 Review Criteria References 24: Novel Approaches in the Management of Klinefelter Syndrome 24.1 Introduction 24.2 Genetic Background 24.3 Endocrine Function and Spermatogenesis in KS 24.4 Clinical Manifestations 24.5 Diagnosis 24.6 Management 24.6.1 Managing Hypogonadism 24.6.1.1 In Adolescents and Adults 24.6.2 Fertility Management 24.6.2.1 Peripubertal KS Boys 24.6.2.2 Cryopreservation in Adolescents 24.6.2.3 Adult KS Men 24.7 Genetics Risks to Offspring 24.8 Conclusion 24.9 Review Criteria References 25: Assisted Reproductive Technology and Its Impact on Male Infertility Management 25.1 Introduction 25.2 Male Infertility Workup and the Role of Urologists 25.3 Multidisciplinary Clinical Care 25.4 The Techniques and Impact of the ART Laboratory on Male Infertility 25.5 Oxidative Burden and the Use of Antioxidants 25.6 Use of Antioxidant Additives During Fertilization and Embryo Culture 25.7 Selection of Sperm 25.7.1 Centrifugation 25.7.2 Swim-Up 25.7.3 Electrophoresis 25.7.4 Magnetic-Activated Cell Sorting 25.7.5 Microfluidics 25.8 Further Selection for ICSI 25.8.1 Sperm-Hyaluronic Acid Binding 25.8.2 High-Magnification Sperm Selection ICSI 25.9 Additional Sperm Processing 25.9.1 Culture and Supplementation 25.9.2 Cryopreservation 25.10 Use of Testicular Sperm 25.11 Stem Cells 25.12 Conclusions 25.13 Review Criteria References Further Reading Part II: Sperm Physiology and Metabolism 26: Fuel/Energy Sources of Spermatozoa 26.1 Introduction 26.2 Functional Ultrastructure of Sperm: Fuel Machineries 26.2.1 Flagellar Ultrastructure 26.2.2 Spermatozoa ATPases 26.2.3 Unique Properties of Sperm Glycolytic Enzymes 26.2.4 Seminal Plasma Components 26.3 Energy Production in Spermatozoa 26.3.1 ATP Production via Oxidative Phosphorylation 26.3.2 ATP Production via Glycolysis 26.3.3 Metabolic Coordination of Sertoli Cells and Germ Cells in Spermatogenesis 26.4 Energy Utilization by Spermatozoa 26.4.1 Sperm Motility and Flagellar Movements 26.4.2 Sperm Capacitation, Hyperactivation, and Acrosome Reaction 26.5 Consequences of Fuel Depletion in Sperm Functions 26.6 Knowing the Energy Sources of Spermatozoa Contributes Toward Improving: 26.6.1 Handling of Gametes In Vitro: Cryopreservation 26.6.2 Handling of Gametes In Vitro: Ambient Temperature Storage 26.6.3 Non-hormonal Male Contraception 26.7 Conclusion 26.8 Review Criteria References 27: Physiological Role of ROS in Sperm Function 27.1 Introduction 27.2 Reactive Oxygen Species 27.3 Origins of ROS in Male Reproductive Tissues 27.4 Endogenous Sources of ROS in Seminal Plasma 27.4.1 Leukocytes 27.4.2 Immature Spermatozoa 27.4.3 Sertoli Cells 27.4.4 Varicocele 27.5 Exogenous Sources of ROS in Seminal Plasma 27.5.1 Radiation 27.5.2 Lifestyle Factors 27.5.3 Toxins 27.6 Physiological Role of ROS on Different Sperm Functions 27.6.1 Sperm Transformational Stages 27.6.2 Maturation 27.6.3 ROS as Signal Transducers 27.6.4 Motility and Hyperactivation 27.6.5 Capacitation 27.6.6 Acrosome Reaction 27.6.7 Sperm-Oocyte Fusion 27.7 Conclusion 27.8 Review Criteria References 28: Sperm Physiology and Assessment of Spermatogenesis Kinetics In Vivo 28.1 Introduction 28.2 The Testis: Structure and Function 28.2.1 Seminiferous Tubules 28.2.2 Sertoli Cells 28.2.3 Hemato-testicular Barrier 28.2.4 Peritubular Microenvironment 28.2.5 Steroidogenesis 28.2.6 Spermatogenesis 28.2.7 Spermiogenesis and Spermiation 28.3 The Epididymis: Structure and Function 28.3.1 Sperm Maturation 28.3.2 Sperm Transport 28.4 Sperm Function 28.4.1 Hyperactivation 28.4.2 Capacitation 28.4.3 Acrosome Reaction 28.4.4 Sperm-Zona Pellucida Binding and Penetration 28.4.5 Chromatin Condensation/Decondensation and DNA Integrity 28.5 Assessment of Spermatogenesis Kinetics In Vivo 28.5.1 The Past 28.5.2 The Present 28.6 Conclusions 28.7 Review Criteria References 29: Origins of Sperm DNA Damage 29.1 Introduction 29.2 What Is Deoxyribonucleic Acid Damage? 29.3 Spermatogenesis and Chromatin Packaging 29.4 Mechanisms of DNA Damage 29.4.1 Reactive Oxygen Species 29.4.2 Sperm Chromatin Packaging 29.4.3 Apoptosis 29.5 Etiological Factors of DNA Damage 29.5.1 Varicocele and Increased Testicular Heat 29.5.2 Genital Tract Infection and Inflammation 29.5.3 Poor Nutritional Intake 29.5.4 Obesity and Metabolic Syndrome 29.5.5 Diabetes Mellitus 29.5.6 Alcohol and Tobacco 29.5.7 Cancer and Chemotherapy 29.5.8 Pollution and Environmental Toxins 29.5.9 Medications and Recreational Drugs 29.5.10 Aging 29.6 Conclusion 29.7 Review Criteria References 30: Seminal Oxidation-Reduction Potential 30.1 Introduction 30.2 Oxidative Stress 30.3 The MiOXSYS System 30.4 Oxidation-Reduction Potential and Male Infertility 30.4.1 Semen Quality and Oxidation-Reduction Potential 30.4.2 Determining a Cutoff to Diagnose Infertile Men 30.4.3 Global Validation 30.4.4 Oxidation-Reduction Potential and In Vitro Fertilization 30.5 Five-Year Outlook 30.6 Conclusion 30.7 Review Criteria References Part III: Common Conditions and Factors Affecting Male Reproductive Health 31: Varicocele 31.1 Introduction 31.2 Epidemiology 31.3 Pathophysiology 31.4 Infertility 31.5 Diagnosis 31.6 Treatment 31.7 Subclinical Varicocele 31.8 Azoospermia 31.9 Hypogonadism 31.10 Oxidative Stress Markers 31.11 Varicocelectomy, ICSI, or Both? 31.12 Future Diagnostic Approach 31.13 Conclusions 31.14 Review Criteria References 32: Infection in Infertility 32.1 Introduction 32.2 Pathogens Causing Male Genital Tract Infections 32.3 Chlamydia trachomatis 32.4 Mycoplasms 32.5 Ureaplasma urealyticum, U. parvum 32.6 Mycoplasma hominis, M. genitalium 32.7 Neisseria gonorrhoeae 32.8 Escherichia coli 32.9 Viruses 32.10 Protozoa 32.11 Treponema pallidum 32.12 Trypanosoma spp. 32.13 Schistosoma spp. 32.14 Male Genital Tract Infections 32.14.1 Orchitis 32.14.2 Epididymitis 32.14.3 Prostatitis 32.14.4 Urethritis 32.15 Male Accessory Gland Infection 32.16 Consequences of Infections on Sperm Fertilizing Capacity 32.17 Treatment of Infections 32.18 Conclusion 32.19 Review Criteria References 33: Ejaculatory Dysfunction and Vasodynamics 33.1 Introduction 33.2 Physiology of Ejaculation 33.2.1 The Events 33.2.2 Neural Control 33.2.3 Definitions 33.3 Evaluation 33.3.1 History 33.3.2 Physical Examination 33.3.3 Laboratory Evaluation 33.3.4 Genetic Testing 33.4 Management of Ejaculatory Disorders 33.4.1 Anatomic 33.4.1.1 Bladder Neck Incompetence 33.4.1.2 Müllerian Duct Cyst 33.4.1.3 Congenital Bilateral Absence of the Vas Deferens/Cystic Fibrosis 33.4.1.4 Ejaculatory Duct Obstruction 33.4.2 Neuropathic 33.4.2.1 Spinal Cord Injury 33.4.2.2 Diabetes Mellitus 33.4.2.3 Postsurgical 33.4.2.4 Neurologic Disorders 33.4.3 Pharmacologic 33.4.3.1 Antidepressants 33.4.3.2 Alpha-Adrenergic Antagonists 33.4.3.3 Finasteride 33.4.4 Functional 33.4.4.1 Premature or Early Ejaculation 33.4.4.2 Delayed Ejaculation 33.4.4.3 Seminal Megavesicles 33.4.4.4 Retrograde Ejaculation 33.4.4.5 Anejaculation 33.5 Conclusion 33.6 Review Criteria References 34: Environmental Factors 34.1 Introduction 34.2 Metals 34.2.1 Arsenic (As) (Metalloid) 34.2.2 Cadmium (Cd) 34.2.3 Lead (Pb) 34.2.4 Mercury (Hg) 34.2.5 Chromium 34.2.6 Copper 34.3 Endocrine-Disrupting Chemicals (EDCs) 34.4 Environmental Estrogens (Xenoestrogens) 34.5 Pesticides 34.5.1 Atrazine 34.5.2 Carbaryl 34.5.3 Chlordecone (Kepone) 34.5.4 Dioxins 34.5.5 Ethylene Dibromide 34.5.6 Polychlorinated Biphenyls 34.5.7 Vinclozolin 34.6 Synthetic and Industrial Chemical Pollutants 34.6.1 Benzene 34.6.2 Carbon Disulfide 34.6.3 Glycol Ether 34.6.4 Methoxychlor 34.6.5 Phthalates 34.6.6 Bisphenol A 34.7 Radiation 34.7.1 Ionizing Radiation 34.7.1.1 Ultraviolet Radiation 34.7.1.2 X-Rays and Gamma Rays 34.7.2 Nonionizing Radiation 34.7.2.1 Cell Phone Signals, 3G, Wi-Fi, and Microwave 34.8 Tobacco 34.9 Air Pollution 34.10 Conclusion 34.11 Review Criteria References 35: Effect of Exogenous Medications and Anabolic Steroids on Male Reproductive and Sexual Health 35.1 Introduction 35.2 5α-Reductase Inhibitors 35.3 α-Blockers 35.4 Phosphodiesterase 5 Inhibitors 35.5 Psychotropic Medications 35.6 Anti-hypertensive Agents 35.7 Anti-infection Medications 35.8 Anti-inflammatories and Salicylates 35.9 Opioids and Analgesics 35.10 Gastrointestinal Medications 35.11 Dermatological Medications 35.12 Antigout Agents 35.13 Anti-cancer Medications 35.13.1 Chemotherapeutic Agents 35.13.2 Targeted Therapies 35.14 Androgenic Anabolic Steroids 35.14.1 Background 35.15 Anabolism Versus Androgenism 35.16 Anabolic Steroids: Beyond Testosterone 35.16.1 Oral AAS Preparations, or 17α-Alkylated Steroids 35.16.2 Parenteral AAS Preparations or 17β-Esterified Steroids 35.16.3 Side-Effects 35.16.4 Anabolic Steroids Impact on Male Fertility 35.16.4.1 The Classic Reversible AAS-Induced Hypogonadotrophic Hypogonadism 35.16.4.2 Permanent Testicular Damage Histopathlogy Impact on Semen Quality Apoptosis Aneuploidies and Ultrastructural Changes in Spermatozoa 35.16.5 Management Strategies 35.17 Conclusions, Management Policy and Authors’ Recommendations 35.18 Review Criteria References 36: Male Age and Andropause 36.1 Introduction 36.2 Aging 36.2.1 Cellular Changes 36.2.2 Semen Analysis 36.2.3 Assisted Reproductive Technology 36.3 Effects of Aging on Genes of Offspring 36.4 Effects of Aging on Offspring Syndromes 36.5 Effects of Aging on Androgen Levels 36.6 Systemic Effects of Decreased Androgens 36.7 Conclusion 36.8 Review Criteria References 37: Apoptosis and Male Infertility 37.1 Introduction 37.2 Physiological Role of Apoptosis in Male Reproduction 37.3 Extrinsic Pathway 37.4 Intrinsic Pathway 37.5 Fas/FasL 37.6 Caspase and Calpain Families 37.7 Cytochrome c 37.8 Nuclear Factor Kappa B 37.9 Spermatogenesis 37.10 Steroidogenesis 37.11 Effect of Environmental Contaminants 37.12 Oxidative Stress 37.13 Mechanisms Involved in Inducing Apoptosis 37.14 Conclusion 37.15 Review Criteria References 38: Impact of Spinal Cord Injury 38.1 Introduction 38.2 Semen Abnormalities in Men with Spinal Cord Injury 38.3 Role of Hormonal Alterations 38.4 Role of Scrotal Temperature 38.5 Role of Bladder Management 38.6 Role of Ejaculation Frequency 38.7 Studies of Oxidative Stress in Men with Spinal Cord Injury 38.8 Reactive Oxygen Species in Whole Semen Versus Washed Sperm 38.9 Reactive Oxygen Species and Sperm Characteristics 38.10 Effect of Leukocytes 38.11 Effect of Cytokines 38.12 The Inflammasome 38.13 Pannexin-1 38.14 Consequences of Oxidative Stress in Semen of Men with Spinal Cord Injury 38.15 Conclusions 38.16 Review Criteria References 39: Obesity 39.1 Introduction 39.2 Obesity: Metabolic Syndrome and Male Infertility 39.3 Obesity and Semen Quality 39.4 Altered Spermatogenesis in Obese Men 39.5 Obesity and Sperm DNA Integrity 39.6 Obesity and Hormones 39.6.1 Hypothalamic–Pituitary–Gonadal Axis (HPG) and Sex Hormones 39.6.2 Adipose Tissue and Metabolic Hormones 39.7 Obesity-Induced Genetic and Epigenetic Modifications 39.8 Obesity-Related Disorders and Male Infertility 39.8.1 Increased Scrotal Temperature 39.8.2 Erectile Dysfunction 39.8.3 Oxidative Stress 39.8.4 Sleep Apnea 39.9 Consequences of Male Obesity on ART Outcomes 39.9.1 Obesity and Pregnancy Onset from ART 39.9.2 Obesity and Pregnancy Outcome After ART 39.9.3 Paternal Obesity and Infant Development Following ART 39.10 Management of Obesity-Induced Male Infertility 39.10.1 Lifestyle Modifications 39.10.2 Prescription Medicine 39.10.3 Surgical Interventions 39.11 Conclusion 39.12 Review Criteria References 40: Smoking Effects on Male Fertility 40.1 Introduction 40.2 Overview of Smoking 40.3 Overview of Male Reproductive Physiology 40.3.1 Hormonal Axis 40.3.2 Normal Reproductive Pathway 40.3.3 Spermatogenesis 40.3.4 Erectile Physiology 40.4 Male Infertility 40.4.1 Factors Affecting Male Fertility 40.4.2 Testicular Factors 40.4.3 Genetic Contribution 40.4.4 Immune 40.5 Effects of Smoking on Male Fertility 40.5.1 Adverse Effects on General Homeostasis 40.5.2 Adverse Effects on Male Reproductive System as a Whole 40.5.3 Mechanism of Smoking Effects on Male Fertility 40.5.4 Risks to Spermatogenesis and Sperm Function 40.5.5 Sperm Morphology 40.5.6 Motility 40.5.7 Sperm Concentration and Volume 40.6 Impairment of Genetic Environment 40.6.1 Gene Methylation 40.6.2 DNA Damage 40.7 Male Fertility Rescue 40.7.1 Does Cessation of Smoking Increase Male Fecundity? 40.8 Conclusions 40.9 Review Criteria References 41: Recreational Drugs 41.1 Introduction 41.2 Cigarette Smoking 41.3 Alcohol 41.4 Marijuana (Cannabis) 41.5 Opioids 41.6 Cocaine 41.7 Methamphetamine and Ecstasy 41.8 Conclusion 41.9 Review Criteria References Part IV: Nutrition, Life-Style and Antioxidants Role for Male Reproductive Health 42: Nutritional Pathways to Protect Male Reproductive Health 42.1 Introduction 42.2 Nutrients and Male Reproductive Health 42.2.1 Arginine 42.2.2 Zinc 42.2.3 Selenium 42.2.4 Vitamin C 42.2.5 Vitamin E 42.2.6 l-Carnitine 42.3 Factors Contributing to Subfertility 42.3.1 Obesity 42.3.2 Alcohol 42.4 Conclusion 42.5 Review Criteria References 43: Antioxidants and Male Infertility 43.1 Introduction 43.2 The Role of Reactive Oxygen Species 43.2.1 Nonenzymatic Systems 43.2.1.1 Carnitine 43.2.1.2 Coenzyme Q10 43.2.2 Vitamin E 43.2.3 Vitamin C 43.2.4 Zinc 43.2.5 Myo-inositol 43.2.6 Herbal Remedy 43.3 Perspectives 43.4 Conclusion 43.5 Review Criteria References 44: Synthetic Antioxidants 44.1 Introduction 44.2 Synthetic Antioxidants 44.3 Reactive Oxygen Species and Antioxidants 44.4 Oxidative Damage to Sperm Cells 44.5 Synthetic Antioxidants 44.6 Mechanisms of Action 44.6.1 Vitamin E 44.6.2 Vitamin A 44.6.3 Vitamin C 44.7 Safety, Dosing, and Side Effects of Toxicity 44.7.1 Vitamin E 44.7.2 Vitamin A 44.7.3 Vitamin C: No Updated Data on Toxicity of Vitamin C 44.8 Management of Oxidative Stress in Male Infertility 44.8.1 Vitamin/Antioxidant Supplementation 44.9 Conclusion 44.10 Review Criteria References 45: New Developments for the Enhancement of Male Reproductive Health Using Antioxidant Therapy: A Critical Review of the Literature 45.1 Introduction 45.2 “Taming the Flames”: A Holistic Path to Preventing Sperm Oxidative Stress 45.3 Antioxidant Therapy for the Treatment of Male Infertility 45.4 Vitamin E 45.5 Vitamin C 45.6 Combined Vitamin C and Vitamin E Therapy 45.7 Coenzyme Q10 45.8 Selenium 45.9 Glutathione 45.10 L-Carnitine 45.11 N-Acetyl Cysteine 45.12 Miscellaneous Antioxidant Monotherapies 45.13 Combination Therapies 45.14 Therapies to Reduce Production of ROS Within the Male Reproductive Tract 45.14.1 Accurately Identify the Presence of Leukocytes in Semen 45.14.2 Treat Infectious Causes of Leukospermia 45.14.3 General Anti-inflammatory Agents in the Absence of Active Infection 45.14.4 Symbiotics: A New Potential Therapy for Male Oxidative Stress 45.15 Therapies That Fortify Sperm Against ROS Damage 45.16 Conclusion 45.17 Review Criteria References 46: In Vitro Studies of Antioxidants for Male Reproductive Health 46.1 Introduction 46.2 ROS and Male Infertility 46.3 Semen Antioxidants and Sperm Function 46.4 In Vitro Antioxidants in Male Infertility 46.5 Role of In Vitro Antioxidants in Protecting Spermatozoa from Exogenous ROS 46.6 Role of In Vitro Antioxidants in Protecting Spermatozoa from Endogenous ROS 46.7 Role of In Vitro Antioxidants in Protecting Spermatozoa from Semen Processing 46.8 Role of In Vitro Antioxidants in Protecting Spermatozoa from Cryopreservation and Thawing 46.9 Conclusion 46.10 Review Criteria References 47: Antioxidants Use and Sperm DNA Damage 47.1 Introduction 47.2 Sperm DNA Damage 47.2.1 Pathophysiology and Etiology of SDF 47.2.2 Impact of SDF on Male Infertility 47.2.3 Impact of Sperm DNA Damage on Semen Parameters 47.2.4 Diagnosis and Treatment 47.3 Use of Antioxidants for Sperm DNA Damage 47.3.1 What Are Antioxidants 47.3.1.1 Vitamin B12 47.3.1.2 Vitamin C (Ascorbic Acid) 47.3.1.3 Vitamin E 47.3.1.4 Folic Acid 47.3.1.5 Carotenoids 47.3.1.6 L-carnitine 47.3.1.7 Zinc 47.3.1.8 Coenzyme Q10 47.3.1.9 Selenium 47.3.1.10 N-acetyl-L-cysteine (NAC) 47.3.2 Role of Antioxidants in Male Infertility: Overview 47.3.3 Evidences Regarding Utility of Antioxidants for SDF 47.4 Safety of Long-Term Antioxidant Use 47.5 Conclusion 47.6 Review Criteria References 48: Yoga, Meditation, and Acupuncture for Male Reproductive Health 48.1 Introduction 48.2 Background 48.3 Mind Body Interventions (MBI) and Integrative Health for Male Infertility 48.4 Yoga Based Lifestyle Intervention 48.4.1 Yoga: The Historic Outlook 48.4.2 Physiological and Psychological Effects of Yoga 48.4.3 Effect of Yoga on Oxidative Stress, Genomic Integrity, and Telomere Dynamics 48.5 Traditional Chinese Medicine: Role of Acupuncture 48.6 Physiologic Basis of Acupuncture in Treating Subfertility 48.7 Conclusion 48.8 Review Criteria References Part V: Assisted Reproductive Technology in Male Fertility 49: The Role of Interventions to Reduce Oxidative Stress and Improve Sperm DNA Integrity Before ICSI 49.1 Introduction 49.2 Oxidative Stress, Sperm DNA Fragmentation, and ICSI Outcome 49.3 Interventions to Reduce Oxidative Stress and Sperm DNA Fragmentation Before ICSI 49.3.1 Short Ejaculatory Abstinence 49.3.2 Oral Antioxidant Therapy 49.3.3 Varicocele Repair 49.3.4 Sperm Processing/Selection Techniques 49.3.5 Use of Testicular Sperm 49.4 Conclusion 49.5 Review Criteria References 50: Sperm Retrieval Techniques 50.1 Introduction 50.2 Sperm Retrieval Techniques 50.2.1 Percutaneous 50.2.1.1 Epididymal Sperm Aspiration (PESA) 50.2.1.2 Testicular Sperm Aspiration (TESA) 50.2.2 Open Non-microsurgical 50.2.2.1 Testicular Sperm Extraction (TESE) 50.2.3 Open Microsurgical 50.2.3.1 Epididymal Sperm Aspiration (MESA) 50.2.3.2 Microdissection Testicular Sperm Extraction (Micro-TESE) 50.3 Prognostic Factors for Successful Sperm Retrieval 50.3.1 Obstructive Azoospermia 50.3.2 Nonobstructive Azoospermia 50.4 Complications 50.5 Assisted Reproductive Technology 50.5.1 Role of IVF Laboratory 50.5.2 Influence of Type of Azoospermia 50.5.3 Sperm Retrieval in Non-azoospermic Men 50.6 Health of Offspring 50.7 Conclusion 50.8 Review Criteria References 51: Microdissection Testicular Sperm Extraction 51.1 Introduction 51.2 Diagnosis of Non-obstructive Azoospermia 51.3 Surgical Approaches 51.4 Conventional TESE 51.5 Fine-Needle Aspiration/Testicular Mapping 51.6 Microdissection TESE 51.7 Preoperative Preparation and Optimization Prior to Microdissection TESE 51.7.1 Genetics Screening 51.8 Karyotype Evaluation 51.9 Endocrine Evaluation and Treatment 51.10 Microdissection TESE Technique 51.10.1 Surgical Approach 51.11 Complications and Considerations After Microdissection TESE 51.12 Predictors of Microdissection TESE Success 51.13 Effect of Prior Biopsy or Conventional TESE Procedure 51.14 Testicular Histology on Diagnostic Biopsy 51.15 Microdissection TESE in Setting of Elevated FSH Levels 51.16 AZF Deletions 51.17 Microdissection TESE in Patient Subpopulation 51.17.1 Klinefelter Syndrome 51.17.2 Post-Chemotherapy Azoospermia 51.17.3 NOA Associated with Cryptorchidism 51.18 Next Years’ View 51.19 Conclusions 51.20 Review Criteria References 52: Sperm Processing and Selection 52.1 Introduction 52.2 Reduction of Semen Viscosity 52.3 Conventional Sperm Selection Methods 52.3.1 Simple Sperm Wash 52.3.2 Swim-Up 52.3.3 Density Gradient Centrifugation 52.4 Preparation of Assisted Ejaculation Samples 52.5 Preparation of Retrograde Ejaculation Samples 52.6 Sperm Preparation Techniques for Cryopreserved Semen 52.7 Preparation of Epididymal and Testicular Sperm 52.8 Advanced Sperm Preparation Methods 52.8.1 Zeta Potential and Sperm Birefringence 52.8.2 Ultrastructural Sperm Selection 52.8.3 Hyaluronic Acid-Mediated Sperm Selection 52.8.4 Electrophoretic Sperm Selection 52.8.4.1 Microflow Cell 52.8.5 Annexin V and MACS Separation 52.8.6 Microfluidic Separation of Sperm 52.9 Specific Indications of Sperm Selection Techniques: Clinical Implications 52.10 Future Directions 52.11 Conclusion 52.12 Review Criteria References 53: Microfluidic Sperm Selection 53.1 Introduction 53.2 Sperm Characteristics that Can Be Used as Selection Factors 53.2.1 Migration in Space-Constricted Environment 53.2.2 Migration Through Viscous Fluids 53.2.3 Positive Rheotaxis 53.2.4 Thermotaxis 53.2.5 Chemotaxis 53.3 Current Sperm-Sorting Technologies 53.4 Microfluidics 53.4.1 Chemotaxis and Thermotaxis 53.4.2 Short-Distance Migration 53.4.3 Resilience 53.5 Future Perspectives 53.6 Conclusion 53.7 Review Criteria References 54: Antioxidants in Sperm Cryopreservation 54.1 Introduction 54.2 Oxidative Stress and Male Infertility 54.3 Oxidative Stress During Cryopreservation 54.4 Effects of Antioxidants on Spermatozoa In Vitro 54.5 Reduction of Reactive Oxygen Species Levels 54.6 Effects on Sperm Motility 54.7 Protection of Sperm DNA Integrity 54.8 Conclusion 54.9 Review Criteria References 55: Antioxidants in ICSI 55.1 Introduction: Male Factor Infertility Relevance and Causes 55.2 Oxidative Stress and Male Factor 55.2.1 Endogenous Sources of Free Radicals 55.2.2 Exogenous Sources of Free Radicals 55.2.2.1 Lifestyle Factors and Medical Conditions Affecting ROS in Sperm 55.2.2.2 Environmental Sources of ROS 55.2.2.3 Laboratory Manipulation 55.3 Consequences of OS in Sperm Affecting ICSI Results 55.3.1 Epigenetic Alterations 55.3.2 DNA Oxidation 55.3.3 DNA Fragmentation 55.3.4 Apoptosis 55.4 The Control of Free Radicals: The Antioxidants 55.5 The Use of Antioxidants to Improve Reproductive Results 55.5.1 Treating the Male Patient 55.5.1.1 Trace Elements 55.5.1.2 Alpha-Lipoic Acid 55.5.1.3 Docosahexaenoic Acid 55.5.1.4 Coenzyme Q10 55.5.1.5 Curcumin Nanomicelles 55.5.1.6 Myo-Inositol 55.5.1.7 Antiestrogens 55.5.1.8 Vitamins 55.5.1.9 Carnitines 55.5.2 Treating the Sample 55.5.2.1 Embryo Culture Media 55.5.2.2 Sperm Treatment 55.6 Conclusions 55.7 Review Criteria References 56: Role of Sperm-Hyaluronic Acid Binding in the Evaluation and Treatment of Subfertile Men with ROS-Affected Semen 56.1 Introduction 56.2 Human Sperm Selection with Hyaluronic Acid-Binding Assay (HBA): The Scientific Rationale Behind a Novel Technology to Select Best Sperm in ART 56.3 Clinical Significance of HA-Binding-Mediated ICSI Sperm Selection: An Update 56.4 Role of ROS Production in Sperm DNA Damage and Clinical Manifestations in Assisted Reproduction: ROS as a Threat for Male Fertility? 56.5 Sperm Properties Associated with ROS-Related DNA Defects, Improved Cellular Attributes of HA-Selected Sperm, and Evaluation of Subfertile Men with ROS-Affected Semen 56.6 Markers for Sperm Oxidative Stress 56.7 Assessment of ROS in Semen: Where Are We Now? 56.8 Conclusions 56.9 Review Criteria References 57: Male Gametes In Vivo to In Vitro: Clinical and Laboratory Management of Nonobstructive Azoospermia 57.1 Introduction 57.2 Definition and Epidemiology 57.3 Aetiology of NOA 57.4 Testicular Histopathology in NOA 57.5 Investigations in NOA 57.5.1 Hormonal Testing 57.5.2 Genetic Testing 57.6 Varicocele in NOA 57.7 Medical Management in NOA 57.8 SERM 57.8.1 Aromatase Inhibitor 57.8.2 Gonadotropins 57.9 Monitoring and Freezing of Ejaculate Sperm in Successfully Treated NOA 57.10 TESA in NOA 57.11 Micro-TESE Case Selection 57.12 Micro-TESE Technique and Tubule Retrieval 57.13 Micro-TESE Tissue Processing in IVF Laboratory 57.13.1 Methods for Selecting Viable Immotile Sperm for ICSI 57.13.2 Hypoosmotic Swelling (HOS) Test 57.13.3 Sperm Tail Flexibility Test 57.13.4 Motility Stimulant Sperm Challenge Using Pentoxifylline 57.14 ICSI Dish Preparation and Sperm Fishing 57.15 Assisted Oocyte Activation in Testicular Sperm 57.16 ICSI Outcome in MTESE 57.17 Cryopreservation of MTESE Sample 57.18 MTESE in Special Situations 57.19 Peri- and Postnatal Outcomes in NOA 57.20 Conclusion 57.21 Review Criteria References 58: Sperm DNA Damage, ART Outcomes, and Laboratory Methods for Selecting DNA Intact Sperm for ICSI 58.1 Introduction 58.2 Which Are the Origins of Spermatic DNA Breakage? 58.3 How Can We Measure the Different Types of Sperm DNA Damage? 58.4 Which Is the SDF Implication in Male Fertility and What Indications Should Be Followed in ART? 58.5 Is It Possible to Select a Sperm with the DNA Intact for ICSI? 58.6 Conclusions 58.7 Review Criteria References 59: Testicular Sperm in Non-azoospermic Infertile Men with Oxidatively Induced High Sperm DNA Damage 59.1 Introduction 59.2 The Oxidatively Induced Sperm DNA Fragmentation 59.3 Clinical Impact of Sperm DNA Fragmentation in ART 59.4 Biological Plausibility of Testicular Sperm from Non-azoospermic Men for ICSI 59.4.1 SDF Rates in Ejaculated, Epididymal, and Testicular Sperm 59.4.2 Aneuploidy Rates in Ejaculated, Epididymal, and Testicular Sperm 59.5 ICSI Outcomes Using Testicular Sperm from Non-azoospermic Men with High SDF 59.6 Sperm Retrieval Methods in Non-azoospermic Men 59.7 Offspring Health 59.8 Proposed Algorithm for SDF Testing and Use of Testicular Sperm for ICSI in Non-azoospermic Men 59.9 Other Strategies to Reduce Sperm DNA Fragmentation 59.10 Conclusions 59.11 Review Criteria References 60: Development of Artificial Gametes 60.1 General Introduction 60.2 Development of Artificial Gametes in Animal Models 60.2.1 Artificial Male Germ Cells and Gametes Derived from Embryonic Stem Cells 60.2.2 Artificial Male Germ Cells and Gametes Derived from Induced Pluripotent Stem Cells 60.2.3 Artificial Male Germ Cells and Gametes Derived from Adult Pluripotent Stem Cells 60.2.4 Artificial Female Germ Cells and Gametes Derived from Embryonic Stem Cells 60.2.5 Artificial Female Germ Cells and Gametes Derived from Induced Pluripotent Stem Cells 60.2.6 Artificial Female Cells and Gametes Derived from Adult Pluripotent Stem Cells 60.3 Development of Artificial Gametes in Humans 60.3.1 Artificial Male Germ Cells and Gametes Derived from Embryonic Stem Cells 60.3.2 Artificial Male Germ Cells and Gametes Derived from Induced Pluripotent Stem Cells 60.3.3 Artificial Male Germ Cells and Gametes Derived from Adult and Fetal Pluripotent Stem Cells 60.3.4 Artificial Female Germ Cells and Gametes Derived from Embryonic Stem Cells 60.3.5 Artificial Female Germ Cells and Gametes Derived from Induced Pluripotent Stem Cells 60.3.6 Artificial Female Cells and Gametes Derived from Adult Pluripotent Stem Cells 60.4 Biological Progress and Ethical Aspects of Clinical Application of Human Artificial Gametes 60.5 Concluding Remarks 60.6 Review Criteria References 61: ICSI and Male Infertility: Consequences to Offspring 61.1 Introduction 61.2 Risks and Sequelae of ICSI to the Health of Offspring 61.2.1 Congenital Abnormalities 61.2.2 Epigenetic Disorders 61.2.3 Chromosome Abnormalities 61.2.4 Infertility 61.2.5 Cancer 61.2.6 Psychological and Neurodevelopment 61.2.7 Metabolic and Cardiovascular 61.3 Conclusions 61.4 Review Criteria References Part VI: Guidelines and Best Practices in Male Infertility and Antioxidants 62: Best Practice Guidelines for Male Infertility Diagnosis and Management 62.1 Introduction 62.2 AUA Best Practice Statement: Optimal Evaluation of the Infertile Male 62.3 ASRM Guidelines 62.4 European Association of Urology Guidelines 62.5 An Assessment of the Guidelines for the Evaluation of the Infertile Male 62.6 Conclusion 62.7 Review Criteria References 63: Best Practice Guidelines for Sperm DNA Fragmentation Testing 63.1 Introduction 63.2 SDF Testing Methods 63.2.1 The TUNEL Assay 63.2.2 The Comet Assay 63.2.3 The Sperm Chromatin Dispersion Test 63.2.4 The Sperm Chromatin Structure Assay 63.3 Indication of SDF Testing 63.3.1 Men with Clinical Varicoceles 63.3.2 Unexplained Infertility, Recurrent Pregnancy Loss, or Intrauterine Insemination Failures 63.3.3 In Vitro Fertilization (IVF)/Intracytoplasmic Sperm Injection (ICSI) Failure 63.3.4 Patients with Risk Factors 63.4 Treatment 63.4.1 Conservative and Counseling Methods 63.4.2 Antioxidant Treatment 63.4.3 Surgical Treatment (Varicocele Ligation) 63.4.4 In the Setting of ART 63.5 Conclusion 63.6 Review Criteria References 64: Antioxidants in the Medical and Surgical Management of Male Infertility 64.1 Introduction 64.2 Ascorbic Acid (Vitamin C) 64.3 α-Tocopherol (Vitamin E) 64.4 Ascorbic Acid (Vitamin C) and α-Tocopherol (Vitamin E) 64.5 α-Tocopherol (Vitamin E) and Selenium 64.6 Glutathione 64.7 Carnitines 64.8 Coenzyme Q10 64.9 Myoinositol 64.10 Lycopene 64.11 Other Compounds 64.11.1 N-Acetyl-Cysteine (NAC) or Vitamin A Plus Vitamin E and Essential Fatty Acids 64.11.2 Pentoxifylline 64.11.3 Selenium 64.11.4 Zinc 64.12 Conclusion 64.13 Review Criteria References Part VII: Special Topics 65: Fertility Preservation for Boys and Adolescents 65.1 Introduction 65.2 Physiology of Reproduction in Children and Adolescents 65.2.1 Hypothalamic-Pituitary-Gonadal Axis 65.2.2 Spermatogenesis 65.3 Effect of Cancer on Reproductive Function in Adolescents and Young Boys 65.3.1 Effect of Cancer on Fertility 65.3.2 Effect of Chemotherapy on Fertility 65.3.3 Effect of Radiotherapy on Fertility 65.3.4 Effect of Cancer Surgery on Fertility 65.4 Fertility Preservation Options 65.4.1 Testicular Shielding 65.4.2 Sperm Cryopreservation 65.4.2.1 Ejaculate 65.4.2.2 Testicular Sperm Extraction 65.4.3 Testicular Transposition 65.4.4 Experimental Methods 65.4.4.1 Cryopreservation of Testicular Tissue and Spermatogonial Stem Cells (SSCs) 65.4.4.2 Spermatogonial Stem Cell Maturation 65.4.4.3 Spermatogonial Stem Cell Transplantation 65.4.4.4 Transplantation of Immature Testicular Tissue (ITT) 65.4.4.5 In Vitro Gamete Maturation (IVM) 65.4.4.6 Artificial Gametes 65.5 Challenges in Cryopreservation in Children and Adolescents 65.5.1 Patient/Family Related 65.5.2 Physician Related 65.5.3 System Related 65.6 Ethical Considerations 65.7 Conclusion 65.8 Review Criteria References 66: Novel Home-Based Devices for Male Infertility Screening 66.1 Introduction 66.2 Conventional Semen Analysis 66.3 Home-Based Semen Tests (Fig. 66.1) 66.3.1 SpermCheck Fertility 66.3.2 SwimCount™ Sperm Quality Test 66.3.3 Micra First Step 66.3.4 Trak System 66.4 Smartphone-Based Semen Testing Devices 66.4.1 Yo Home Sperm Test (Fig. 66.2) 66.5 Limitations 66.6 Conclusion 66.7 Review Criteria References 67: Ethical Dimensions of Male Infertility 67.1 Introduction 67.2 Oncofertility 67.3 Posthumous Reproduction/Sperm Retrieval (PHR/PSR) 67.4 Advanced Paternal Age 67.5 Transgender Fertility (Male to Female) 67.6 Economic Disparities 67.7 Conclusions References 68: Harmful Effects of Antioxidant Therapy 68.1 Introduction 68.2 Reactive Oxygen Species 68.3 Oxidative Stress 68.4 Antioxidants and Male Infertility 68.5 Antioxidants: A Double-Edged Sword 68.5.1 The “Antioxidant Paradox” 68.5.2 Reductive Stress 68.6 Clinical Aspects of Antioxidant Treatment 68.6.1 Benefits of Antioxidant Treatment 68.6.2 Risks of Antioxidant Treatment 68.6.3 Risks of Dietary Antioxidants 68.6.3.1 Oxalic Acid 68.6.3.2 Phytic Acid 68.6.3.3 Tannins 68.6.3.4 Others 68.6.4 Risks of Antioxidant Supplements 68.7 Conclusion 68.8 Review Criteria References 69: Male Infertility from the Developing Nation Perspective 69.1 Introduction 69.2 Prevalence of Male Infertility in Developing Countries 69.3 Etiology of Male Infertility in Africa 69.4 Reproductive Tract Infections 69.4.1 Neisseria Gonorrhoeae 69.4.2 Chlamydia Trachomatis 69.4.3 Human Immunodeficiency Virus Infection 69.4.4 Genital Tuberculosis 69.4.5 Genitourinary Bilharziasis 69.4.6 Lepromatous Leprosy 69.4.7 Sickle Cell Disease 69.4.8 Mycotoxin and Environmental Toxins 69.4.9 Smoking and Alcohol Intake on Male Infertility 69.4.10 Iatrogenic Causes of Male Infertility in Africa 69.4.11 Management of Male Infertility in Africa 69.4.12 Prevention of Male Infertility in Africa 69.4.13 Male Infertility (the Case of Zambia) 69.5 Conclusion 69.6 Review Criteria References 70: Diabetes and Male Infertility 70.1 Introduction 70.2 General Mechanisms 70.2.1 Oxidative Stress 70.2.2 Hypothalamic-Pituitary-Gonadal Axis 70.2.3 Neuropathy 70.2.4 Infectious 70.3 Steroidogenesis 70.4 Spermatogenesis and Sperm Parameters 70.5 Sexual Dysfunctions 70.5.1 Erectile Dysfunction 70.5.2 Ejaculatory Dysfunctions 70.5.3 Libido 70.6 Conclusions 70.6.1 Review Criteria References 71: Empiric Medical Therapy for Idiopathic Male Infertility 71.1 Introduction 71.2 Hormonal Treatments 71.2.1 Gonadotropins 71.2.2 Androgens 71.2.3 Selective Estrogen Receptor Modulators 71.2.4 Aromatase Inhibitors 71.3 Antioxidant Treatments 71.4 Conclusion 71.5 Review Criteria References 72: Testosterone Therapy in Male Infertility 72.1 Introduction 72.2 HPG Axis and Association with Male Reproduction 72.3 Effects of TRT on Male Fertility 72.3.1 Transdermal Gels and Patches 72.3.2 Long- and Short-Acting Injections 72.3.3 Subcutaneous Pellets 72.3.4 Intranasal Gels 72.4 Treatment Options to Increase Intratesticular Testosterone 72.4.1 Gonadotropins: GnRH and hCG 72.4.2 Clomiphene Citrate 72.5 Aromatase Inhibitors 72.6 Lifestyle Modification 72.7 Varicocele Repair 72.8 Leydig Stem Cells 72.9 Conclusion 72.10 Review Criteria References Index