ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Making Presentation Math Computable: A Context-Sensitive Approach for Translating LaTeX to Computer Algebra Systems

دانلود کتاب محاسباتی کردن ریاضی ارائه: رویکردی حساس به زمینه برای ترجمه لاتک به سیستم های جبری رایانه ای

Making Presentation Math Computable: A Context-Sensitive Approach for Translating LaTeX to Computer Algebra Systems

مشخصات کتاب

Making Presentation Math Computable: A Context-Sensitive Approach for Translating LaTeX to Computer Algebra Systems

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 3658404728, 9783658404727 
ناشر: Springer Vieweg 
سال نشر: 2023 
تعداد صفحات: 215
[209] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Making Presentation Math Computable: A Context-Sensitive Approach for Translating LaTeX to Computer Algebra Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب محاسباتی کردن ریاضی ارائه: رویکردی حساس به زمینه برای ترجمه لاتک به سیستم های جبری رایانه ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب محاسباتی کردن ریاضی ارائه: رویکردی حساس به زمینه برای ترجمه لاتک به سیستم های جبری رایانه ای

این کتاب دسترسی آزاد به موضوع ترجمه عبارات ریاضی از LaTeX به نحو سیستم های جبر رایانه ای (CAS) می پردازد. در طول دهه‌های گذشته، به‌ویژه در حوزه علوم، فناوری، مهندسی و ریاضیات (STEM)، LaTeX به استاندارد واقعی برای حروفچینی فرمول‌های ریاضی در نشریات تبدیل شده است. از آنجایی که عموماً دانشمندان ملزم به انتشار آثار خود هستند، LaTeX به بخشی جدایی ناپذیر از گردش کار انتشار امروزی تبدیل شده است. از سوی دیگر، تحقیقات مدرن به طور فزاینده ای بر CAS برای ساده سازی، دستکاری، محاسبه و تجسم ریاضیات متکی است. با این حال، توابع واردات LaTeX موجود در CAS به عبارات حسابی ساده محدود می‌شوند و بنابراین برای اکثر موارد استفاده ناکافی هستند. در نتیجه، گردش کار آزمایش و انتشار در علوم اغلب شامل تبدیل‌های دستی زمان‌بر و مستعد خطا بین قالب‌های LaTeX و CAS محاسباتی است. برای رسیدگی به فقدان یک ابزار ترجمه قابل اعتماد و جامع بین LaTeX و CAS، این پایان نامه سه مشارکت زیر را ارائه می دهد. اول، رویکردی برای تقویت معنایی عبارات LaTeX با اطلاعات معنایی کافی برای ترجمه به نحو CAS ارائه می‌کند. ثانیاً، اولین چارچوب LaCAST را که LaTeX به CAS از متن آگاه است، نشان می دهد. سوم، این پایان نامه رویکرد جدیدی را برای ارزیابی عملکرد ترجمه های LaTeX به CAS در مجموعه داده های مقیاس بزرگ با تأیید خودکار معادلات در کتابخانه های ریاضی دیجیتال ارائه می دهد.

این یک کتاب با دسترسی آزاد است.


br>


توضیحاتی درمورد کتاب به خارجی

This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries.

This is an open access book.



فهرست مطالب

Contents
List of Figures
List of Tables
Abstract
Zusammenfassung
Acknowledgements
CHAPTER 1
Introduction
	1.1 Motivation & Problem
	1.2 Research Gap
	1.3 Research Objective
	1.4 Thesis Outline
		1.4.1 Publications
		1.4.2 Research Path
CHAPTER 2
Mathematical Information Retrieval
	2.1 Background and Overview
	2.2 Mathematical Formats and Their Conversions
		2.2.1 Web Formats
			2.2.1.1 MathML
			2.2.1.2 OpenMath
			2.2.1.3 OMDoc
		2.2.2 Word Processor Formats
			2.2.2.1 LATEX
			2.2.2.2 Semantic/Content LaTeX
			2.2.2.3 sTeX
			2.2.2.4 Template Editors
		2.2.3 Computable Formats
			2.2.3.1 Computer Algebra Systems
			2.2.3.2 Theorem Prover
		2.2.4 Images and Tree Representations
		2.2.5 Math Embeddings
	2.3 From Presentation to Content Languages
		2.3.1 Background
			2.3.1.1 Related Work
		2.3.2 Benchmarking MathML
			2.3.2.1 Collection
			2.3.2.2 Gold Standard
			2.3.2.3 Evaluation Metrics
		2.3.3 Evaluation of Context-Agnostic Conversion Tools
			2.3.3.1 Tool Selection
			2.3.3.2 Testing framework
			2.3.3.3 Results
		2.3.4 Summary of MathML Converters
	2.4 Mathematical Information Retrieval for LaTeX Translations
CHAPTER 3
Semantification of Mathematical LaTeX
	3.1 Semantification via Math-Word Embeddings
		3.1.1 Foundations and Related Work
			3.1.1.1 Word Embedding
		3.1.2 Semantic Knowledge Extraction
			3.1.2.1 Evaluation of Math-Embedding-Based Knowledge Extraction
			3.1.2.2 Improvement by Considering the Context
			3.1.2.3 Visualizing Our Model
		3.1.3 On Overcoming the Issues of Knowledge Extraction Approaches
		3.1.4 The Future of Math Embeddings
	3.2 Semantification with Mathematical Objects of Interest
		3.2.1 Related Work
		3.2.2 Data Preparation
			3.2.2.1 Data Wrangling
			3.2.2.2 Complexity of Math
		3.2.3 Frequency Distributions of Mathematical Formulae
			3.2.3.1 Zipf’s Law
			3.2.3.2 Analyzing and Comparing Frequencies
		3.2.4 Relevance Ranking for Formulae
		3.2.5 Applications
		3.2.6 Outlook
	3.3 Semantification with Textual Context Analysis
		3.3.1 Semantification, Translation & Evaluation Pipeline
CHAPTER 4
From LaTeX to Computer Algebra Systems
	4.1 Context-Agnostic Neural Machine Translation
		4.1.1 Training Datasets & Preprocessing
		4.1.2 Methodology
		4.1.3 Evaluation of the Convolutional Network
			4.1.3.1 Results
			4.1.3.2 Qualitative Analysis and Discussion
	4.2 Context-Sensitive Translation
		4.2.1 Motivation
		4.2.2 Related Work
		4.2.3 Formal Mathematical Language Translations
			4.2.3.1 Example of a Formal Translation
		4.2.4 Document Pre-Processing
		4.2.5 Annotated Dependency Graph Construction
		4.2.6 Semantic Macro Replacement Patterns
			4.2.6.1 Common Knowledge Pattern Recognition
CHAPTER 5
Qualitative and Quantitative Evaluations
	5.1 Evaluations on the Digital Library of
Mathematical Functions
		5.1.1 The DLMF dataset
		5.1.2 Semantic LaTeX to CAS translation
			5.1.2.1 Constraint Handling
			5.1.2.2 Parse sums, products, integrals, and limits
			5.1.2.3 Lagrange’s notation for differentiation and derivatives
		5.1.3 Evaluation of the DLMF using CAS
			5.1.3.1 Symbolic Evaluation
			5.1.3.2 Numerical Evaluation
		5.1.4 Results
			5.1.4.1 Error Analysis
		5.1.5 Conclude Quantitative Evaluations on the DLMF
			5.1.5.1 Future Work
	5.2 Evaluations on Wikipedia
		5.2.1 Symbolic and Numeric Testing
		5.2.2 Benchmark Testing
		5.2.3 Results
			5.2.3.1 Descriptive Term Extractions
			5.2.3.2 Semantification
			5.2.3.3 Translations from LATEX to CAS
		5.2.4 Error Analysis & Discussion
			5.2.4.1 Defining Equations
			5.2.4.2 Missing Information
			5.2.4.3 Non-Matching Replacement Patterns
		5.2.5 Conclude Qualitative Evaluations on Wikipedia
CHAPTER 6
Conclusion and FutureWork
	6.1 Summary
	6.2 Contributions and Impact of the Thesis
	6.3 Future Work
		6.3.1 Improved Translation Pipeline
		6.3.2 Improve LaTeX to MathML Converters
		6.3.3 Enhanced Formulae in Wikipedia
		6.3.4 Language Independence
Glossary
Bibliography of Publications,
Submissions & Talks
Bibliography




نظرات کاربران