دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الگوریتم ها و ساختارهای داده ها: شناخت الگو ویرایش: 1st نویسندگان: Jürgen Beyerer, Fernando Puente León, Christian Frese سری: ISBN (شابک) : 3662477939, 9783662477946 ناشر: Springer-Verlag Berlin Heidelberg سال نشر: 2015 تعداد صفحات: 802 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 46 مگابایت
کلمات کلیدی مربوط به کتاب ماشین دید: بازرسی بصری خودکار: نظریه ، عمل و کاربردها: پردازش سیگنال، تصویر و گفتار، پردازش تصویر و بینایی کامپیوتری، رباتیک و اتوماسیون، علوم اندازه گیری و ابزار دقیق
در صورت تبدیل فایل کتاب Machine Vision: Automated Visual Inspection: Theory, Practice and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ماشین دید: بازرسی بصری خودکار: نظریه ، عمل و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمهای کامل بر بینایی ماشین ارائه میکند. در دو
بخش سازماندهی شده است. بخش اول جمع آوری تصویر را پوشش می دهد،
که جزء حیاتی اکثر سیستم های بازرسی بصری خودکار است. تمام روش
های مهم با جزئیات زیاد توضیح داده شده و با ساختاری مستدل
ارائه شده اند.
بخش دوم به مدلسازی و پردازش سیگنالهای تصویر میپردازد و به
روشهایی که برای بازرسی بصری خودکار مرتبط هستند، توجه ویژهای
دارد.
The book offers a thorough introduction to machine vision. It
is organized in two parts. The first part covers the image
acquisition, which is the crucial component of most automated
visual inspection systems. All important methods are
described in great detail and are presented with a reasoned
structure.
The second part deals with the modeling and processing of
image signals and pays particular regard to methods, which
are relevant for automated visual inspection.
Preface Contents Chapter 1 Introduction 1 Introduction 1.1 Visual inspection 1.2 Optical capturing of test objects 1.3 Formation and definition of an image 1.4 Machine vision 1.5 Practical approach for performing machine vision projects 1.6 Bibliography Part I Image Acquisition Chapter 2 Light 2 Light 2.1 The phenomenon of light 2.1.1 The electromagnetic spectrum 2.2 Light as an electromagnetic wave 2.2.1 Maxwell’s equations 2.2.2 Polarization 2.2.3 Huygens’ principle 2.2.4 Coherence 2.2.5 Interference 2.2.6 Diffraction 2.2.7 Speckle 2.3 Light as a quantum phenomenon 2.4 The ray model of geometrical optics 2.5 Summary 2.6 Interaction of light and matter 2.6.1 Absorption 2.6.2 The law of reflection 2.6.3 The law of refraction 2.6.4 Scattering 2.6.5 The Fresnel coefficients for reflection and transmission 2.6.6 Electromagnetic waves in conductive media 2.7 Light sources 2.7.1 Thermal radiators 2.7.2 Gas-discharge lamps 2.7.3 Light-emitting diodes 2.7.4 Laser 2.7.5 Summary 2.8 Bibliography Chapter 3 Optical Imaging 3 Optical Imaging 3.1 Introduction 3.2 Imaging with a pinhole camera, central projection 3.3 The camera model and camera calibration 3.4 Optical imaging using a single lens 3.4.1 The paraxial approximation and Gaussian optics 3.4.2 Thin lens equation 3.4.3 Bundle limitation 3.4.4 Depth of field 3.4.5 Telecentric imaging 3.4.6 Perspective 3.4.7 Imaging of tilted planes 3.4.8 Aberrations 3.5 Optical instruments with several lenses 3.5.1 The projector 3.5.2 The microscope 3.6 Bibliography Chapter 4 Radiometry 4 Radiometry 4.1 Radiometric quantities 4.2 The light field of a test object 4.3 The bidirectional reflectance distribution function (BRDF) 4.3.1 BRDF and scattered light 4.4 Formation of image values 4.4.1 Application to a thin lens 4.5 Bibliography Chapter 5 Color 5 Color 5.1 Photometry 5.2 Color perception and color spaces 5.2.1 Color perception of the human eye 5.2.2 Color mixing 5.2.3 CIE color spaces 5.2.4 Spectrophotometry for color measurement and color distance computation 5.2.5 Color order systems 5.2.6 Other color spaces 5.3 Filters 5.4 Acquisition and processing of color images 5.5 Bibliography Chapter 6 Sensors for Image Acquisition 6 Sensors for Image Acquisition 6.1 Point, line and area sensors 6.2 Image tube cameras 6.3 Photomultipliers 6.3.1 Image intensifiers 6.4 Photodiodes 6.5 Position sensitive detectors (PSD) 6.6 Charge-coupled device (CCD) 6.7 Complementary metal-oxide-semiconductor (CMOS) sensors 6.8 Line-scan cameras 6.9 Color sensors and color cameras 6.10 Infrared cameras 6.10.1 Bolometer cameras 6.10.2 Infrared quantum detector cameras 6.11 Quality criteria for image sensors 6.12 Bibliography Chapter 7 Methods of Image Acquisition 7 Methods of Image Acquisition 7.1 Introduction 7.2 Measuring optical properties 7.2.1 Measurement of the complex index of refraction 7.2.2 Fluorescence 7.2.3 Methods for measuring the reflectance 7.2.4 Spectral sensors 7.2.5 Light scattering methods and the inspection of surface roughness 7.3 3D shape capturing 7.3.1 Triangulation (point-by-point scanning) 7.3.2 Light-section methods (line scanning) 7.3.3 The measurement uncertainty of triangulation 7.3.4 Structured illumination 7.3.5 Deflectometry 7.3.6 The moiré method 7.3.7 Final remark on structured illumination 7.3.8 Stereo images 7.3.9 Light-field cameras 7.3.10 Silhouette capturing 7.3.11 Shape from shading 7.3.12 Autofocus sensors 7.3.13 Confocal microscopy 7.3.14 Confocal chromatic triangulation 7.3.15 Time-of-flight sensors 7.3.16 Phase-based methods 7.4 Capturing interior object structures 7.4.1 Thermography 7.4.2 Imaging using X-rays 7.4.3 Optical coherence tomography 7.4.4 Schlieren imaging and schlieren tomography 7.4.5 Image acquisition using terahertz radiation 7.4.6 Photoelasticity 7.5 Special image acquisition methods 7.5.1 Image acquisition systems with variable illumination direction 7.5.2 Endoscopy 7.6 Universal principles 7.6.1 Suppression of extraneous light 7.6.2 Inverse illumination 7.7 Summary 7.8 Bibliography Part II Image Processing Chapter 8 Image Signals 8 Image Signals 8.1 Mathematical model of image signals 8.2 Systems and signals 8.2.1 System characteristics 8.2.2 The Dirac delta function 8.2.3 Convolution 8.3 The Fourier transform 8.3.1 The one-dimensional Fourier transform 8.3.2 The one-dimensional sampling theorem 8.3.3 The discrete Fourier transform (DFT) 8.3.4 The two-dimensional Fourier transform 8.3.5 Dirac delta functions in two-dimensional space 8.3.6 The two-dimensional Heaviside function 8.3.7 Sampling of two-dimensional signals 8.3.8 Sampling theorem for two-dimensional signals 8.3.9 The two-dimensional DFT 8.4 Examples of use concerning system theory and the Fourier transform 8.5 Image signals as stochastic processes 8.5.1 Moments of stochastic processes 8.5.2 Stationarity and ergodicity 8.5.3 Passing a stochastic process through an LSI system 8.6 Quantization 8.6.1 Optimal quantization 8.6.2 The quantization theorem 8.6.3 Modeling of the quantization 8.7 The Karhunen–Loève transform 8.7.1 Definition of the Karhunen–Loève transform 8.7.2 Properties of the Karhunen–Loève transform 8.7.3 Examples of application of the Karhunen–Loève transform 8.8 Bibliography Chapter 9 Preprocessing and Image Enhancement 9 Preprocessing and Image Enhancement 9.1 Simple image enhancement methods 9.1.1 Contrast adjustment by histogram stretching 9.1.2 Histogram manipulation 9.1.3 Pseudo-color and false-color images 9.1.4 Image sharpening 9.2 Reduction of systematic errors 9.2.1 Geometric rectification 9.2.2 Suppression of inhomogeneities 9.3 Attenuation of random disturbances 9.3.1 Linear filters 9.3.2 Noise reduction using nonlinear filters 9.4 Image registration 9.5 Bibliography Chapter 10 Image Restoration 10 Image Restoration 10.1 Signal model 10.2 Inverse filter 10.3 The Wiener filter 10.4 The geometric mean filter 10.5 Optimal constraint filter 10.6 Restoration problems in matrix notation 10.7 Restoration for participating media 10.8 Spatially-varying image restoration 10.9 Bibliography Chapter 11 Segmentation 11 Segmentation 11.1 Region-based segmentation 11.1.1 Segmentation by feature-based classification 11.1.2 Region growing methods 11.2 Edge-oriented methods 11.2.1 Gradient filters 11.2.2 Edge detection using the second derivative 11.2.3 The watershed transformation 11.3 Diffusion filters 11.3.1 Linear, homogeneous, isotropic image diffusion 11.3.2 Linear, inhomogeneous, isotropic image diffusion 11.3.3 Nonlinear, inhomogeneous, isotropic image diffusion 11.3.4 Nonlinear, inhomogeneous, anisotropic image diffusion 11.4 Active contours 11.4.1 Gradient vector flow 11.4.2 Vector field convolution 11.5 Segmentation according to Mumford and Shah 11.6 Segmentation using graph cut methods 11.7 Bibliography Chapter 12 Morphological Image Processing 12 Morphological Image Processing 12.1 Binary morphology 12.1.1 Point sets and structuring elements 12.1.2 Erosion and dilation 12.1.3 Opening and closing 12.1.4 Border extraction 12.1.5 Region filling 12.1.6 Component labeling and connected component analysis 12.1.7 The hit-or-miss operator 12.1.8 Skeletonization 12.1.9 Pruning 12.2 Gray-scale morphology 12.2.1 The point set of a gray-scale image 12.2.2 Erosion and dilation 12.2.3 Opening and closing 12.2.4 Edge detection 12.3 Bibliography Chapter 13 Texture Analysis 13 Texture Analysis 13.1 Types of textures 13.1.1 Structural texture type 13.1.2 Structural-statistical texture type 13.1.3 Statistical texture type 13.2 Visual inspection tasks regarding textures 13.3 Model-based texture analysis 13.3.1 Analysis of structural textures 13.3.2 Analysis of structural-statistical textures 13.3.3 Autoregressive models for analyzing statistical textures 13.3.4 Separation of line textures 13.4 Feature-based texture analysis 13.4.1 Basic statistical texture features 13.4.2 Co-occurrence matrix 13.4.3 Histogram of oriented gradients 13.4.4 Run-length analysis 13.4.5 Laws’ texture energy measures 13.4.6 Local binary patterns 13.5 Bibliography Chapter 14 Detection 14 Detection 14.1 Detection of known objects by linear filters 14.1.1 Unknown background 14.1.2 White noise as background 14.1.3 Correlated, weakly stationary noise as background 14.1.4 Discrete formulation of the matched filter 14.2 Detection of unknown objects (defects) 14.3 Detection of straight lines 14.3.1 The Radon transform 14.3.2 Detection of line-shaped structures 14.3.3 The Hough transform for the detection of lines 14.3.4 The Hough transform for the detection of curves 14.3.5 The generalized Hough transform 14.3.6 Implicit shape models 14.4 Corner detection 14.5 Bibliography Chapter 15 Image Pyramids, theWavelet Transform and Multiresolution Analysis 15 Image Pyramids, the Wavelet Transform and Multiresolution Analysis 15.1 Image pyramids 15.1.1 Gaussian pyramid 15.1.2 Laplacian pyramid 15.1.3 Pyramid linking 15.2 Wavelets 15.2.1 Continuous wavelet transform 15.2.2 Discretization of the wavelet transform 15.3 Multiresolution analysis 15.4 The fast wavelet transform 15.5 The two-dimensional wavelet transform 15.6 Scale-invariant features 15.7 Bibliography Part III Appendix Appendix A Mathematical Foundations A Mathematical Foundations A.1 The intercept theorem A.2 Inverse problems A.3 Bibliography Appendix B The Fourier Transform B The Fourier Transform B.1 The one-dimensional Fourier transform B.1.1 Definition B.1.2 Properties and characteristics B.1.3 Correspondences B.2 The n-dimensional Fourier transform B.2.1 Definition B.2.2 Correspondences of the two-dimensional Fourier transform B.3 The discrete Fourier transform List of Symbols List of Abbreviations Index