ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Machine Vision Beyond Visible Spectrum

دانلود کتاب بینایی ماشین فراتر از طیف مرئی

Machine Vision Beyond Visible Spectrum

مشخصات کتاب

Machine Vision Beyond Visible Spectrum

ویرایش: 1 
نویسندگان: , , , , ,   
سری: Augmented Vision and Reality 1 
ISBN (شابک) : 9783642115677, 9783642115684 
ناشر: Springer-Verlag Berlin Heidelberg 
سال نشر: 2011 
تعداد صفحات: 253 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 36,000



کلمات کلیدی مربوط به کتاب بینایی ماشین فراتر از طیف مرئی: پردازش سیگنال، تصویر و گفتار، پردازش تصویر و بینایی کامپیوتری، کنترل، رباتیک، مکاترونیک



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Machine Vision Beyond Visible Spectrum به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بینایی ماشین فراتر از طیف مرئی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بینایی ماشین فراتر از طیف مرئی



مواد این کتاب شامل بسیاری از رشته ها، از جمله مرئی، مادون قرمز، مادون قرمز دور، موج میلی متری، مایکروویو، رادار، رادار دیافراگم مصنوعی و حسگرهای الکترواپتیکال و همچنین موضوعات بسیار پویا پردازش تصویر است. بینایی کامپیوتری و تشخیص الگو

این کتاب از شش بخش تشکیل شده است:

* مدلسازی پس زمینه پیشرفته برای نظارت
* پیشرفت در ردیابی در تصاویر مادون قرمز
* روشهای تخمین پوز در تصاویر اولتراسوند و LWIR< br>* تشخیص در رادار دیافراگم چند طیفی و مصنوعی
* ادغام حسگرهای متفاوت
* سنسورهای هوشمند


توضیحاتی درمورد کتاب به خارجی

The material of this book encompasses many disciplines, including visible, infrared, far infrared, millimeter wave, microwave, radar, synthetic aperture radar, and electro-optical sensors as well as the very dynamic topics of image processing, computer vision and pattern recognition.

This book is composed of six parts:

* Advanced background modeling for surveillance
* Advances in Tracking in Infrared imagery
* Methods for Pose estimation in Ultrasound and LWIR imagery
* Recognition in multi-spectral and synthetic aperture radar
* Fusion of disparate sensors
* Smart Sensors



فهرست مطالب

1 Introduction......Page 2
1.3 Target Tracking......Page 4
3.1 Motion Compensation......Page 7
Cover......Page 1
Preface......Page 5
Contents......Page 8
5 Descriptor Construction......Page 9
7 Experiments......Page 13
5.3 Simulated Experimental Results......Page 14
2.3 Experimental Results......Page 19
3.1 Local Feature Based Integration of Tracking and Detection......Page 24
4.3 Fringe-Adjusted JTC Based Target Tracking......Page 27
References......Page 28
3 Harmonic Analysis......Page 6
Part ITracking and Recognition in Infrared......Page 10
Local Feature Based Person Detection and Tracking Beyond the Visible Spectrum......Page 11
2.1 Local Feature Based Person Detection......Page 15
6 Conclusion and Discussions......Page 16
3.2 Target Detection and Tracking......Page 17
2.2 Body Part Classification......Page 18
3.3 Test Results......Page 20
4 Discussion......Page 25
3.2 Results and Evaluation......Page 29
4.4 Test Results......Page 30
1 Introduction......Page 12
Machine Vision Beyond Visible Spectrum......Page 3
3 Person Tracking......Page 23
5 Conclusion......Page 33
3.3 Tracking Under Strong Camera Motion......Page 34
3.3 Tracking......Page 21
References......Page 31
4 Conclusion......Page 37
References......Page 38
Appearance Learning for Infrared Tracking with Occlusion Handling......Page 41
1 Introduction......Page 42
2 Related Work......Page 44
3 Problem Formulation......Page 46
4.1 Histogram Similarity......Page 48
4.2 Kalman Filtering......Page 49
4.3 AKF Covariance Matching (AKFcov)......Page 50
4.4 AKF Autocovariance Based Least Squares (AKFals)......Page 51
4.5 Comparison Between AKFals and AKFcov......Page 55
5.1 Dual Foreground--Background Appearance Model......Page 56
5.2 Target Dynamics......Page 57
5.3 Target Tracking with Appearance Learning......Page 58
7.1 Experiments on the AMCOM Dataset......Page 60
7.2 Experiments on the VIVID Dataset......Page 65
8 Conclusion......Page 69
References......Page 70
3D Model-Driven Vehicle Matching and Recognition......Page 73
1 Introduction......Page 74
2.2 Inverse Rendering......Page 76
2.3 Near-IR Illumination......Page 77
3.1 Model Determination......Page 78
3.2 Pose Recovery......Page 79
3.3 Estimation of Reflectance Fraction......Page 80
3.4 Illumination Recovery......Page 82
3.5 Re-lighting......Page 83
3.6 Vehicle Matching......Page 84
4 Near-IR Illumination......Page 85
5 Experimental Results......Page 86
5.1 Matching Experiments......Page 87
References......Page 91
Pattern Recognition and Tracking in Forward Looking Infrared Imagery......Page 94
1 Introduction......Page 95
2 FKT Based Pattern Recognition and Tracking......Page 96
2.1 Global Motion Compensation......Page 98
2.2 Fukunaga--Koontz Transform......Page 100
2.3 FKT Based Detection and Tracking......Page 102
2.4 Test Results......Page 104
2.5 Conclusion......Page 105
3 Pattern Recognition via Optoelectronic Correlation......Page 106
3.1 Fringe-Adjusted JTC......Page 107
3.2 Target Detection and Tracking......Page 110
3.3 Test Results......Page 113
3.4 Conclusion......Page 116
4 Invariant Object Detection and Tracking......Page 117
4.1 Fringe-Adjusted JTC Based Motion Estimation......Page 118
4.3 Fringe-Adjusted JTC Based Target Tracking......Page 120
4.4 Test Results......Page 123
5 Conclusion......Page 126
References......Page 127
A Bayesian Method for Infrared Face Recognition......Page 130
1 Introduction......Page 131
2 Generalized Gaussian Mixture Model......Page 132
3 Bayesian Learning of the GGM......Page 134
3.1 Hierarchical Model, Priors and Posteriors......Page 135
3.2 Complete Algorithm......Page 138
4 Experimental Results......Page 139
5 Conclusion......Page 142
References......Page 143
Part IIMulti-Sensor Fusion and Smart Sensors......Page 146
Fusion of a Camera and a Laser Range Sensor for Vehicle Recognition......Page 147
1 Introduction......Page 148
2 System Configuration......Page 149
3 Segmenting Vehicles from Laser Range Data......Page 150
3.1 Side Surface-Based Method......Page 151
3.3 Detection Results......Page 152
4.1 Calibration Results......Page 154
5 Refinement of Segmentation......Page 155
5.1 Graph Cut Method......Page 156
6.1 Classification Method......Page 157
6.2 Classification Results......Page 159
7 Discussion......Page 160
8 Conclusion......Page 162
1 Introduction......Page 164
1.1 What is Needed?......Page 165
1.2 A System Approach......Page 166
2 System Architecture......Page 167
3 A Bio-Inspired Sensor Design......Page 169
4 Scene Simulation and Sensor Modeling......Page 171
5.1 Detection and Tracking in Peripheral Views......Page 173
5.2 Target Classification Using 3D and HSI Fovea......Page 175
5.3 Simulated Experimental Results......Page 177
6 Conclusion and Discussions......Page 179
References......Page 181
Part III Hyperspectral Image Analysis......Page 182
Affine Invariant Hyperspectral Image Descriptors Based upon Harmonic Analysis......Page 183
1 Introduction......Page 184
2 Heavy-Tailed Distributions......Page 186
3 Harmonic Analysis......Page 188
4 Invariance to Affine Distortions......Page 190
5 Descriptor Construction......Page 191
6 Implementation Issues......Page 194
7 Experiments......Page 195
8 Conclusion......Page 200
References......Page 201
Tracking and Identification via Object Reflectance Using a Hyperspectral Video Camera......Page 204
1 Introduction......Page 205
2 The Hyperspectral Video Camera......Page 206
3 Estimating Object Reflectance......Page 207
4.1 Framework of Particle Filter......Page 211
4.2 Appearance Model......Page 213
4.3 Adaptive Velocity......Page 214
5.1 Sequential Recognition......Page 215
7 Conclusion......Page 221
References......Page 222
Moving Object Detection and Tracking in Forward Looking Infra-Red Aerial Imagery......Page 223
1 Introduction......Page 224
1.1 Ego-Motion Compensation......Page 225
1.2 Regions of Interest Detection......Page 226
2 Related Work......Page 227
3.1 Motion Compensation......Page 229
3.2 Object Detection......Page 237
3.3 Tracking......Page 243
4 Discussion......Page 247
5 Conclusion......Page 251
References......Page 253




نظرات کاربران