دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Quan Hua, Shams Ul Azeem, Saif Ahmed سری: ISBN (شابک) : 1786462966, 9781786462961 ناشر: Packt Publishing سال نشر: 2017 تعداد صفحات: [296] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning with TensorFlow 1.x: Second generation machine learning with Google's brainchild - TensorFlow 1.x به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی با TensorFlow 1.x: یادگیری ماشینی نسل دوم با خلاقیت گوگل - TensorFlow 1.x نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Copyright Credits About the Authors About the Reviewer www.PacktPub.com Customer Feedback Table of Contents Preface Chapter 1: Getting Started with TensorFlow Current use Installing TensorFlow Ubuntu installation macOS installation Windows installation Virtual machine setup Testing the installation Summary Chapter 2: Your First Classifier The key parts Obtaining training data Downloading training data Understanding classes Automating the training data setup Additional setup Converting images to matrices Logical stopping points The machine learning briefcase Training day Saving the model for ongoing use Why hide the test set? Using the classifier Deep diving into the network Skills learned Summary Chapter 3: The TensorFlow Toolbox A quick preview Installing TensorBoard Incorporating hooks into our code Handwritten digits AlexNet Automating runs Summary Chapter 4: Cats and Dogs Revisiting notMNIST Program configurations Understanding convolutional networks Revisiting configurations Constructing the convolutional network Fulfilment Training day Actual cats and dogs Saving the model for ongoing use Using the classifier Skills learned Summary Chapter 5: Sequence to Sequence Models-Parlez-vous Français? A quick preview Drinking from the firehose Training day Summary Chapter 6: Finding Meaning Additional setup Skills learned Summary Chapter 7: Making Money with Machine Learning Inputs and approaches Getting the data Approaching the problem Downloading and modifying data Viewing the data Extracting features Preparing for training and testing Building the network Training Testing Taking it further Practical considerations for the individual Skills learned Summary Chapter 8: The Doctor Will See You Now The challenge The data The pipeline Understanding the pipeline Preparing the dataset Explaining the data preparation Training routine Validation routine Visualize outputs with TensorBoard Inception network Going further Other medical data challenges The ISBI grand challenge Reading medical data Skills Learned Summary Chapter 9: Cruise Control - Automation An overview of the system Setting up the project Loading a pre-trained model to speed up the training Testing the pre-trained model Training the model for our dataset Introduction to the Oxford-IIIT Pet dataset Dataset Statistics Downloading the dataset Preparing the data Setting up input pipelines for training and testing Defining the model Defining training operations Performing the training process Exporting the model for production Serving the model in production Setting up TensorFlow Serving Running and testing the model Designing the web server Testing the system Automatic fine-tune in production Loading the user-labeled data Performing a fine-tune on the model Setting up cronjob to run every day Summary Chapter 10: Go Live and Go Big Quick look at Amazon Web Services P2 instances G2 instances F1 instances Pricing Overview of the application Datasets Preparing the dataset and input pipeline Pre-processing the video for training Input pipeline with RandomShuffleQueue Neural network architecture Training routine with single GPU Training routine with multiple GPU Overview of Mechanical Turk Summary Chapter 11: Going Further - 21 Problems Dataset and challenges Problem 1 - ImageNet dataset Problem 2 - COCO dataset Problem 3 - Open Images dataset Problem 4 - YouTube-8M dataset Problem 5 - AudioSet dataset Problem 6 - LSUN challenge Problem 7 - MegaFace dataset Problem 8 - Data Science Bowl 2017 challenge Problem 9 - StarCraft Game dataset TensorFlow-based Projects Problem 10 - Human Pose Estimation Problem 11 - Object Detection - YOLO Problem 12 - Object Detection - Faster RCNN Problem 13 - Person Detection - tensorbox Problem 14 - Magenta Problem 15 - Wavenet Problem 16 - Deep Speech Interesting Projects Problem 17 - Interactive Deep Colorization - iDeepColor Problem 18 - Tiny face detector Problem 19 - People search Problem 20 - Face Recognition - MobileID Problem 21 - Question answering - DrQA Caffe to TensorFlow TensorFlow-Slim Summary Chapter 12: Advanced Installation Installation Installing Nvidia driver Installing the CUDA toolkit Installing cuDNN Installing TensorFlow Verifying TensorFlow with GPU support Using TensorFlow with Anaconda Summary Index