دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd Edition نویسندگان: Karthik Ramasubramanian, Abhishek Singh سری: ISBN (شابک) : 9781484242155 ناشر: Apress سال نشر: تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Machine Learning Using R به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین با استفاده از R نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آخرین پیشرفتهای فناوری را در ساخت یک مدل یادگیری ماشینی مقیاسپذیر با دادههای بزرگ با استفاده از R بررسی کنید. این ویرایش دوم به شما نشان میدهد که چگونه با یک الگوریتم یادگیری ماشینی کار کنید و از آن برای ساختن یک ML استفاده کنید. مدل از داده های خام خواهید دید که چگونه از برنامه نویسی R با TensorFlow استفاده کنید، بنابراین در صورتی که فقط با R راحت باشید، از تلاش برای یادگیری پایتون اجتناب می کنید.
همانطور که در نسخه اول، نویسندگان تعادل خوب نظریه و کاربرد را حفظ کرده اند. یادگیری ماشین از طریق موارد استفاده مختلف در دنیای واقعی که مجموعه ای جامع از موضوعات یادگیری ماشین را در اختیار شما قرار می دهد. فصلهای جدید این نسخه شامل مدلهای سری زمانی و یادگیری عمیق است.
آنچه یاد خواهید گرفتExamine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R.
As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning.
What You'll LearnContents......Page 3
Intro......Page 14
Intro to Machine Learning & R......Page 16
Understanding the Evolution......Page 17
Probability and Statistics......Page 22
Getting Started with R......Page 36
Machine Learning Process Flow......Page 45
Summary......Page 48
Data Preparation & Exploration......Page 49
Planning the Gathering of Data......Page 50
Initial Data Analysis (IDA)......Page 61
Exploratory Data Analysis......Page 74
Case Study: Credit Card Fraud......Page 86
Summary......Page 91
Sampling & Resampling Techniques......Page 92
Introduction to Sampling......Page 93
Sampling Terminology......Page 94
Data Description......Page 99
Pooled Mean and Variance......Page 101
Business Implications of Sampling......Page 106
Probability and Non-Probability Sampling......Page 107
Statistical Theory on Sampling Distributions......Page 109
Probability Sampling Techniques......Page 119
()......Page 152
Monte Carlo Method: Acceptance-Rejection Method......Page 160
Summary......Page 163
Data Visualization in R......Page 164
Introduction to the ggplot2 Package......Page 165
Line Chart......Page 166
Stacked Column Charts......Page 173
Scatterplots......Page 180
Boxplots......Page 181
Histograms and Density Plots......Page 185
Pie Charts......Page 190
Correlation Plots......Page 193
Heatmaps......Page 195
Bubble Charts......Page 197
Waterfall Charts......Page 202
Dendogram......Page 205
Wordclouds......Page 208
Sankey Plots......Page 210
Time Series Graphs......Page 211
Cohort Diagrams......Page 214
Spatial Maps......Page 216
Summary......Page 221
Feature Engineering......Page 223
Introduction to Feature Engineering......Page 224
Understanding the Data......Page 225
Feature Ranking......Page 233
Variable Subset Selection......Page 238
Principal Component Analysis......Page 257
Summary......Page 263
Machine Learning Theory & Practice......Page 264
Machine Learning Types......Page 267
Groups of Machine Learning Algorithms......Page 269
Real-World Datasets......Page 275
Regression Analysis......Page 279
Correlation Analysis......Page 282
Support Vector Machine SVM......Page 343
Decision Trees......Page 351
The Naive Bayes Method......Page 387
Cluster Analysis......Page 396
Association Rule Mining......Page 416
Artificial Neural Networks......Page 437
Text-Mining Approaches......Page 459
Online Machine Learning Algorithms......Page 484
Model Building Checklist......Page 490
Summary......Page 492
Machine Learning Model Evaluation......Page 493
Dataset......Page 494
Introduction to Model Performance and Evaluation......Page 499
Objectives of Model Performance Evaluation......Page 501
Population Stability Index......Page 502
Model Evaluation for Continuous Output......Page 508
Model Evaluation for Discrete Output......Page 518
Probabilistic Techniques......Page 530
The Kappa Error Metric......Page 535
Summary......Page 539
Model Performance Improvement......Page 542
Overview of the Caret Package......Page 544
Introduction to Hyper-Parameters......Page 546
Hyper-Parameter Optimization......Page 550
The Bias and Variance Tradeoff......Page 568
Introduction to Ensemble Learning......Page 573
Ensemble Techniques Illustration in R......Page 579
Advanced Topic: Bayesian Optimization of Machine Learning Models......Page 595
Summary......Page 601
Time Series Modeling......Page 603
Components of Time Series......Page 604
Test of Stationarity......Page 608
ACF and AR Model......Page 612
PACF and MA Model......Page 616
ARIMA Model......Page 620
Linear Regression with AR Errors......Page 629
Summary......Page 634
Scalable ML & related Technologies......Page 636
Distributed Processing and Storage......Page 637
The Hadoop Ecosystem......Page 645
Machine Learning in R with Spark......Page 662
Machine Learning in R with H2O......Page 668
Summary......Page 672
Deep Learning using Keras & TensorFlow......Page 673
Introduction to Deep Learning......Page 674
Deep Learning Architectures......Page 675
Deep Learning Toolset......Page 680
Use Case: Identify Duplicate Questions in Quora......Page 682
Summary......Page 694
Index......Page 695