دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ankur Kumar. Jesus Flores-Cerrillo
سری:
ISBN (شابک) : 9781846284809
ناشر:
سال نشر: 2022
تعداد صفحات: [352]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Machine Learning in Python for Process Systems Engineering: Achieving operational excellence using process data به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین در پایتون برای مهندسی سیستم های فرآیند: دستیابی به برتری عملیاتی با استفاده از داده های فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مسیرهای طراحی فعلی برای حسگرهای نرم را بررسی میکند و خوانندگان را در ارزیابی انتخابهای مختلف راهنمایی میکند. این کتاب مطالعات موردی حاصل از همکاری بین نویسندگان و شرکای صنعتی را ارائه میکند. راهحلهای ارائهشده، که برخی از آنها بهصورت آنلاین در کارخانههای صنعتی پیادهسازی میشوند، برای مقابله با طیف گستردهای از کاربردها از اندازهگیری پشتیبانگیری از سیستم و تجزیه و تحلیل what-if از طریق پیشبینی زمان واقعی برای کنترل کارخانه تا تشخیص و اعتبارسنجی حسگر طراحی شدهاند.
This book reviews current design paths for soft sensors, and guides readers in evaluating different choices. The book presents case studies resulting from collaborations between the authors and industrial partners. The solutions presented, some of which are implemented on-line in industrial plants, are designed to cope with a wide range of applications from measuring system backup and what-if analysis through real-time prediction for plant control to sensor diagnosis and validation.
Preface Part 1 Introduction and Fundamentals • Chapter 1 Machine Learning for Process Systems Engineering o 1.1 What are Process Systems ▪ 1.1.1 Characteristics of process data o 1.2 What is Machine Learning ▪ 1.2.1 Machine learning workflow ▪ 1.2.2 Type of machine learning systems o 1.3 Machine Learning Applications in Process Industry ▪ 1.3.1 Decision hierarchy levels in a process plant ▪ 1.3.2 Application areas o 1.4 ML Solution Deployment o 1.5 The Future of Process Data Science • Chapter 2 The Scripting Environment o 2.1 Introduction to Python o 2.2 Introduction to Spyder and Jupyter o 2.3 Python Language: Basics o 2.4 Scientific Computing Packages: Basics ▪ 2.4.1 Numpy ▪ 2.4.2 Pandas o 2.5 Typical ML Script 20 • Chapter 3 Machine Learning Model Development: Workflow and Best Practices o 3.1 ML Model Development Workflow o 3.2 Data Pre-processing: Data Transformation ▪ 3.2.1 (Robust) Data centering & scaling ▪ 3.2.2 Feature extraction ▪ 3.2.3 Feature engineering ▪ 3.2.4 Workflow automation via pipelines o 3.3 Model Evaluation ▪ 3.3.1 Regression metrics ▪ 3.3.2 Classification metrics ▪ 3.3.3 Holdout method / cross-validation ▪ 3.3.4 Residual analysis o 3.4 Model Tuning ▪ 3.4.1 Overfitting & underfitting ▪ 3.4.2 Train/validation/test split ▪ 3.3.3 K-fold cross-validation ▪ 3.4.4 Regularization ▪ 3.4.5 Hyperparameter optimization via GridSearchCV 39 • Chapter 4 Data Pre-processing: Cleaning Process Data o 4.1 Signal De-noising ▪ 4.1.1 Moving window average filter ▪ 4.1.2 SG filter 67` 4.2 Variable Selection/Feature Selection ▪ 4.2.1 Filter methods ▪ 4.2.2 Wrapper methods ▪ 4.2.3 Embedded methods 4.3 Outlier Handling ▪ 4.3.1 Univariate methods ▪ 4.3.2 Multivariate methods ▪ 4.3.3 Data-mining methods 4.4 Handling Missing Data Part 2 Classical Machine Learning Methods • Chapter 5 Dimension Reduction and Latent Variable Methods (Part 1) o 5.1 PCA: An Introduction ▪ 5.1.1 Mathematical background ▪ 5.1.2 Dimensionality reduction for polymer manufacturing process o 5.2 Process Monitoring via PCA for Polymer Manufacturing Process ▪ 5.2.1 Process monitoring/fault detection indices ▪ 5.2.2 Fault detection ▪ 5.2.3 Fault diagnosis o 5.3 Variants of Classical PCA ▪ 5.3.1 Dynamic PCA ▪ 5.3.2 Multiway PCA ▪ 5.3.3 Kernel PCA o 5.4 PLS: An Introduction ▪ 5.4.1 Mathematical background o 5.5 Soft Sensing via PLS for Pulp & Paper Manufacturing Process o 5.6 Process monitoring via PLS for Polyethylene Manufacturing Process ▪ 5.6.1 Fault detection indices ▪ 5.6.2 Fault detection o 5.7 Variants of Classical PLS • Chapter 6 Dimension Reduction and Latent Variable Methods (Part 2) o 6.1 ICA: An Introduction ▪ 6.1.1 Mathematical background ▪ 6.1.2 Complex chemical process: Tennessee Eastman Process ▪ 6.1.3 Deciding number of ICs o 6.2 Process Monitoring via ICA for Tennessee Eastman Process ▪ 6.2.1 Fault detection indices ▪ 6.2.2 Fault detection 6.3 FDA: An Introduction ▪ 6.3.1 Mathematical background ▪ 6.3.2 Dimensionality reduction for Tennessee Eastman Process o 6.4 Fault Classification via FDA for Tennessee Eastman Process 120 • Chapter 7 Support Vector Machines & Kernel-based Learning o 7.1 SVMs: An Introduction ▪ 7.1.1 Mathematical background ▪ 7.1.2 Hard margin vs soft margin classification o 7.2 The Kernel Trick for Nonlinear Data ▪ 7.2.1 Mathematical background 7.3 SVDD: An Introduction 142` 7.3.1 Mathematical background 7.3.2 OC-SVM vs SVDD 7.3.3 Bandwidth parameter and SVDD illustration 7.4 Process Fault Detection via SVDD 7.5 SVR: An Introduction ▪ 7.5.1 Mathematical background 7.6 Soft Sensing via SVR in a Polymer Processing Plant 7.7 Soft Sensing via SVR for Debutanizer Column in a Petroleum Refinery • Chapter 8 Finding Groups in Process Data: Clustering & Mixture Modeling o 8.1 Clustering: An Introduction ▪ 8.1.1 Multimode semiconductor manufacturing process o 8.2 Centroid-based Clustering: K-Means ▪ 8.2.1 Determining the number of clusters via elbow method ▪ 8.2.2 Silhouette analysis for quantifying clusters quality ▪ 8.2.3 Pros and cons 8.3 Density-based Clustering: DBSCAN ▪ 8.3.3 Pros and cons o 8.4 Probabilistic Clustering: Gaussian Mixtures ▪ 8.4.1 Mathematical background ▪ 8.4.2 Determining the number of clusters o 8.5 Multimode Process Monitoring via GMM for Semiconductor Manufacturing Process ▪ 8.5.1 Fault detection indices ▪ 8.5.2 Fault detection • Chapter 9 Decision Trees & Ensemble Learning o 9.1 Decision Trees: An Introduction ▪ 9.1.1 Mathematical background o 9.2 Random Forests: An Introduction ▪ 9.2.1 Mathematical background o 9.3 Soft Sensing via Random Forest in Concrete Construction Industry ▪ 9.3.1 Feature importances o 9.4 Introduction to Ensemble Learning ▪ 9.4.1 Bagging ▪ 9.4.2 Boosting o 9.5 Effluent Quality Prediction in Wastewater Treatment Plant via XGBoost 192 • Chapter 10 Other Useful Classical ML Techniques o 10.1 KDE: An Introduction ▪ 10.1.1 Mathematical background ▪ 10.1.2 Deciding KDE hyperparameters o 10.2 Determining Monitoring Metric Control Limit via KDE o 10.3 kNN: An Introduction ▪ 10.3.1 Mathematical background ▪ 10.3.2 Deciding kNN hyperparameters ▪ 10.3.3 Applications of kNN for process systems o 10.4 Process Fault Detection via kNN for semiconductor Manufacturing Process o 10.5 Combining ML Techniques 214 Part 3 Artificial Neural Networks & Deep Learning • Chapter 11 Feedforward Neural Networks o 11.1 ANN: An Introduction ▪ 11.1.1 Deep learning ▪ 11.1.2 TensorFlow o 11.2 Process Modeling via FFNN for Combined Cycle Power Plant o 11.3 Mathematical Background ▪ 11.3.1 Activation functions ▪ 11.3.2 Loss functions & cost functions ▪ 11.3.3 Gradient descent optimization ▪ 11.3.4 Epochs & batch-size ▪ 11.3.5 Backpropagation ▪ 11,3,6 Vanishing/Exploding gradients o 11.4 Nonlinearity in Neural Nets (Width vs Depth) o 11.5 Neural Net Hyperparameter Optimization o 11.6 Strategies for Improved Network Training ▪ 11.6.1 Early stopping ▪ 11.6.2 Regularization ▪ 11.6.3 Initialization ▪ 11.6.4 Batch normalization o 11.7 Soft Sensing via FFNN for Debutanizer Column in a Petroleum Refinery o FFNN Modeling Guidelines • Chapter 12 Recurrent Neural Networks o 12.1 RNN: An Introduction ▪ 12.1.1 RNN outputs ▪ 12.1.2 LSTM networks o 12.2 System Identification via LSTM RNN for SISO Heater System o 12.3 Mathematical Background o 12.4 Stacked/Deep RNNs o 12.5 Fault Classification vis LSTM for Tennessee Eastman Process o 12.6 Predictive Maintenance using LSTM Networks ▪ 12.6.1 Failure prediction using LSTM ▪ 12.6.2 Remaining useful life (RUL) prediction using LSTM 256 • Chapter 13 Reinforcement Learning o 13.1 Reinforcement Learning: An Introduction ▪ 13.1.1 RL for process control o 13.2 RL Terminology & Mathematical Concepts ▪ 13.2.1 Environment and Markov decision process ▪ 13.2.2 Reward and return ▪ 13.2.3 Policy ▪ 13.2.4 Value function ▪ 13.2.5 Bellman equation o 13.3 Fundamentals of Q-learning o 13.4 Deep RL & Actor-Critic Framework ▪ 13.4.1 Deep Q-learning ▪ 13.4.2 Policy gradient methods ▪ 13.4.3 Actor-Critic framework o 13.5 Deep Deterministic Policy Gradient (DDPG) ▪ 13.5.1 Replay memory 285` 13.5.2 Target networks 13.5.3 OU process as exploration noise 13.6 DDPG RL Agent as Level Controller Part 4 Deploying ML Solutions Over Web • Chapter 14 Process Monitoring Web Application o 14.1 Process Monitoring Web App: Introduction o 14.2 A Simple ‘Hello World’ Web App o 14.3 Embedding ML Models into Web Apps o 14.4 Building Front-end User Interface Appendix Dataset Descriptions