دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 سری: ISBN (شابک) : 9781788473897, 1788474392 ناشر: سال نشر: تعداد صفحات: 290 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Machine Learning in Java به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین در جاوا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Page Copyright and Credits Contributors About Packt Table of Contents Preface Applied Machine Learning Quick Start Machine learning and data science Solving problems with machine learning Applied machine learning workflow Data and problem definition Measurement scales Data collection Finding or observing data Generating data Sampling traps Data preprocessing Data cleaning Filling missing values Remove outliers Data transformation Data reduction Unsupervised learning Finding similar items Euclidean distances Non-Euclidean distances The curse of dimensionality Clustering Supervised learning Classification Decision tree learning Probabilistic classifiers Kernel methods Artificial neural networks Ensemble learning Evaluating classification Precision and recall Roc curves Regression Linear regression Logistic regression Evaluating regression Mean squared error Mean absolute error Correlation coefficient Generalization and evaluation Underfitting and overfitting Train and test sets Cross-validation Leave-one-out validation Stratification Summary Java Libraries and Platforms for Machine Learning The need for Java Machine learning libraries Weka Java machine learning Apache Mahout Apache Spark Deeplearning4j MALLET The Encog Machine Learning Framework ELKI MOA Comparing libraries Building a machine learning application Traditional machine learning architecture Dealing with big data Big data application architecture Summary Basic Algorithms - Classification, Regression, and Clustering Before you start Classification Data Loading data Feature selection Learning algorithms Classifying new data Evaluation and prediction error metrics The confusion matrix Choosing a classification algorithm Classification using Encog Classification using massive online analysis Evaluation Baseline classifiers Decision tree Lazy learning Active learning Regression Loading the data Analyzing attributes Building and evaluating the regression model Linear regression Linear regression using Encog Regression using MOA Regression trees Tips to avoid common regression problems Clustering Clustering algorithms Evaluation Clustering using Encog Clustering using ELKI Summary Customer Relationship Prediction with Ensembles The customer relationship database Challenge Dataset Evaluation Basic Naive Bayes classifier baseline Getting the data Loading the data Basic modeling Evaluating models Implementing the Naive Bayes baseline Advanced modeling with ensembles Before we start Data preprocessing Attribute selection Model selection Performance evaluation Ensemble methods – MOA Summary Affinity Analysis Market basket analysis Affinity analysis Association rule learning Basic concepts Database of transactions Itemset and rule Support Lift Confidence Apriori algorithm FP-Growth algorithm The supermarket dataset Discover patterns Apriori FP-Growth Other applications in various areas Medical diagnosis Protein sequences Census data Customer relationship management IT operations analytics Summary Recommendation Engines with Apache Mahout Basic concepts Key concepts User-based and item-based analysis Calculating similarity Collaborative filtering Content-based filtering Hybrid approach Exploitation versus exploration Getting Apache Mahout Configuring Mahout in Eclipse with the Maven plugin Building a recommendation engine Book ratings dataset Loading the data Loading data from a file Loading data from a database In-memory databases Collaborative filtering User-based filtering Item-based filtering Adding custom rules to recommendations Evaluation Online learning engine Content-based filtering Summary Fraud and Anomaly Detection Suspicious and anomalous behavior detection Unknown unknowns Suspicious pattern detection Anomalous pattern detection Analysis types Pattern analysis Transaction analysis Plan recognition Outlier detection using ELKI An example using ELKI Fraud detection in insurance claims Dataset Modeling suspicious patterns The vanilla approach Dataset rebalancing Anomaly detection in website traffic Dataset Anomaly detection in time series data Using Encog for time series Histogram-based anomaly detection Loading the data Creating histograms Density-based k-nearest neighbors Summary Image Recognition with Deeplearning4j Introducing image recognition Neural networks Perceptron Feedforward neural networks Autoencoder Restricted Boltzmann machine Deep convolutional networks Image classification Deeplearning4j Getting DL4J MNIST dataset Loading the data Building models Building a single-layer regression model Building a deep belief network Building a multilayer convolutional network Summary Activity Recognition with Mobile Phone Sensors Introducing activity recognition Mobile phone sensors Activity recognition pipeline The plan Collecting data from a mobile phone Installing Android Studio Loading the data collector Feature extraction Collecting training data Building a classifier Reducing spurious transitions Plugging the classifier into a mobile app Summary Text Mining with Mallet - Topic Modeling and Spam Detection Introducing text mining Topic modeling Text classification Installing Mallet Working with text data Importing data Importing from directory Importing from file Pre-processing text data Topic modeling for BBC News BBC dataset Modeling Evaluating a model Reusing a model Saving a model Restoring a model Detecting email spam Email spam dataset Feature generation Training and testing Model performance Summary What Is Next? Machine learning in real life Noisy data Class unbalance Feature selection Model chaining The importance of evaluation Getting models into production Model maintenance Standards and markup languages CRISP-DM SEMMA methodology Predictive model markup language Machine learning in the cloud Machine learning as a service Web resources and competitions Datasets Online courses Competitions Websites and blogs Venues and conferences Summary Other Books You May Enjoy Index