دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021 نویسندگان: Ahmed Abdulkadir (editor), Seyed Mostafa Kia (editor), Mohamad Habes (editor), Vinod Kumar (editor), Jane Maryam Rondina (editor), Chantal Tax (editor), Thomas Wolfers (editor) سری: ISBN (شابک) : 3030875857, 9783030875855 ناشر: Springer سال نشر: 2021 تعداد صفحات: 185 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning in Clinical Neuroimaging: 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September ... (Lecture Notes in Computer Science, 13001) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی در تصویربرداری عصبی بالینی: چهارمین کارگاه بین المللی، MLCN 2021، برگزار شده در ارتباط با MICCAI 2021، استراسبورگ، فرانسه، سپتامبر ... (یادداشت های سخنرانی در علوم کامپیوتر، 13001) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Organization Contents Computational Anatomy Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer’s Disease Pathology Using Ex vivo Imaging 1 Introduction 2 Ex-vivo Imaging Dataset 2.1 Specimen Preparation and Imaging 2.2 Quantitative NFT Burden Maps from Histology 2.3 Histology-Guided MTL Subregion Segmentations 3 Methods 3.1 Overview of Topological Unfolding Framework 3.2 Segmentation of the Outer MTL Boundary in Ex vivo MRI 3.3 Laplacian Coordinate System 3.4 Mapping Image and Morphological Features to Unfolded Space 4 Experiments and Results 4.1 Consensus MTL Subregion Segmentation in Unfolded Coordinate Space 4.2 Correlating NFT Burden with MTL Neurodegeneration 4.3 Surface-Based Registration Using Mean Curvature Maps 5 Conclusions References Distinguishing Healthy Ageing from Dementia: A Biomechanical Simulation of Brain Atrophy Using Deep Networks 1 Introduction 2 Methods 2.1 Data 2.2 Preprocessing 2.3 Model Overview 2.4 Training and Evaluation 3 Experimental Methods and Results 3.1 Evaluation of Biomechanical Model 3.2 Evaluation of Atrophy Estimation 4 Discussion and Future Work References Towards Self-explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows 1 Introduction 2 Normalizing Flows as Generative Invertible Classifiers and Regressors 2.1 Manifold-Constrained NFs for Efficient 3D Data Processing 2.2 Implementation Details and Model Training 3 Explainable AI with Normalizing Flows 3.1 Derivative-Based Attribution Map of the Inverse 3.2 Counterfactual Images for Systematic Analyses 4 Experiments and Results 5 Conclusion References Patch vs. Global Image-Based Unsupervised Anomaly Detection in MR Brain Scans of Early Parkinsonian Patients 1 Introduction 2 Brain Anomaly Detection Pipeline 2.1 Autoencoder Architectures 2.2 Post-processing of the Reconstruction Error Maps 3 Experiments 3.1 Data 3.2 Training of the Auto-Encoders 3.3 Performance Evaluation 4 Results 5 Discussion and Conclusion References MRI Image Registration Considerably Improves CNN-Based Disease Classification 1 Introduction 2 Data and Methods 2.1 Dataset 2.2 Image Preprocessing 2.3 Network Architecture and Training 3 Results 4 Discussion References Dynamic Sub-graph Learning for Patch-Based Cortical Folding Classification 1 Introduction 2 Methods 3 Experimental Results 4 Conclusions References Detection of Abnormal Folding Patterns with Unsupervised Deep Generative Models 1 Introduction 2 Methods 2.1 Focusing on Folding Information 2.2 Generating Synthetic Brain Anomalies 2.3 Learning a Representation of the Normal Variability 3 Results 3.1 Datasets and Implementation 3.2 Analysing Learned Folding Variability 4 Discussion and Conclusion References PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction 1 Introduction 2 Related Work 3 Method 3.1 Deformation Block 3.2 Smoothing and Training 4 Experiments 5 Conclusion References Multi-modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network 1 Introduction 2 Method 2.1 Baseline Architecture 2.2 Proposed Architecture 2.3 Learning Process and Implementation Details 3 Experiments and Results 3.1 Datasets 3.2 Results and Discussion 4 Conclusion References Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance 1 Introduction 2 Method 2.1 Guidance with Registration Module 2.2 Segmentation with Positional Correlation Attention Block 2.3 Training Strategy 3 Experiments and Results 3.1 Datasets and Experiments 3.2 Results 4 Conclusion References Brain Networks and Time Series Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation 1 Introduction 2 Methods 2.1 Participants and Image Acquisition 2.2 Modelling the Cortex as an Icosphere 2.3 Image Processing and Augmentation 2.4 Model Architecture and Implementation 3 Results 4 Discussion References Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data 1 Introduction 2 Materials and Methods 2.1 Deep Stacking Network 2.2 Conditional Nonlinear Granger Causal Modeling with DSN 2.3 Model Validation and Application 3 Experiments and Results 3.1 Synthetic Dataset 3.2 Simulated fMRI Dataset 3.3 Real-World fMRI Dataset 4 Discussion 5 Conclusion References Dynamic Adaptive Spatio-Temporal Graph Convolution for fMRI Modelling 1 Introduction 2 Methodology 2.1 Preliminaries 2.2 Temporal Lag Correction 2.3 Temporal Feature Extraction 2.4 Spatial Feature Extraction 2.5 Framework of the Model 3 Experiments 3.1 Dataset 3.2 Experimental Setup 3.3 Experimental Results 4 Generalizability 5 Limitations 6 Discussion References Structure-Function Mapping via Graph Neural Networks 1 Introduction 2 Preliminaries 2.1 Problem Statement 2.2 Autoencoder 2.3 Graph Convolutional Networks (GCN) 2.4 Graph Transformer Networks (GTN) 3 Experiments 3.1 Data 3.2 Implementation 4 Results and Discussion 5 Conclusion References Improving Phenotype Prediction Using Long-Range Spatio-Temporal Dynamics of Functional Connectivity 1 Introduction 2 Related Works 3 Methods 4 Results 5 Discussion References H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning 1 Introduction 2 Proposed Method 2.1 Materials and Preprocessing 2.2 Problem Formulation 2.3 Multi-Mechanism Diffusion-Convolution (MMDC) 2.4 Diffusion-Radiomics 3 Experiments and Results 3.1 Experimental Settings 3.2 H3K27M Mutation Prediction Results 3.3 Node Pooling Interpretation 4 Conclusion References Constrained Learning of Task-Related and Spatially-Coherent Dictionaries from Task fMRI Data 1 Introduction 2 Constrained Online Dictionary Learning 2.1 Dictionary Learning of fMRI Data 2.2 Incorporating Task Characteristics 2.3 Constraining Spatial Patterns 2.4 Optimization 3 Application and Results 3.1 Synthetic fMRI Data Generation Using SimTB 3.2 Evaluation of Sparse Dictionary Learning Algorithms 3.3 Synthetic Data Results 3.4 Real Task fMRI Data 4 Conclusion References Author Index