دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Subhi J. Al'Aref M.D. (editor), Gurpreet Singh (editor), Lohendran Baskaran (editor), Dimitri Metaxas (editor) سری: ISBN (شابک) : 0128202734, 9780128202739 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 454 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 62 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning in Cardiovascular Medicine به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی در پزشکی قلب و عروق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یادگیری ماشین در پزشکی قلب و عروق به کاربردهای در حال گسترش هوش مصنوعی (AI)، به ویژه یادگیری ماشین (ML)، در مراقبت های بهداشتی و پزشکی قلب و عروق می پردازد. این کتاب بر تاکید بر ML برای کاربردهای زیست پزشکی تمرکز دارد و خلاصهای جامع از گذشته و حال هوش مصنوعی، مبانی ML و کاربردهای بالینی ML در پزشکی قلبی عروقی برای تجزیه و تحلیل پیشبینیکننده و پزشکی دقیق ارائه میدهد. این به خوانندگان کمک می کند تا درک کنند که ML چگونه کار می کند همراه با محدودیت ها و نقاط قوت آن، به طوری که می توانند از قدرت محاسباتی آن برای ساده کردن گردش کار و بهبود مراقبت از بیمار استفاده کنند. هم برای پزشکان و هم برای مهندسان مناسب است. ارائه الگویی برای پزشکان برای درک زمینه های کاربرد یادگیری ماشینی در تحقیقات قلبی عروقی؛ و به دانشمندان و مهندسان کامپیوتر در ارزیابی تأثیر فعلی و آتی یادگیری ماشینی بر پزشکی قلب و عروق کمک می کند.
Machine Learning in Cardiovascular Medicine addresses the ever-expanding applications of artificial intelligence (AI), specifically machine learning (ML), in healthcare and within cardiovascular medicine. The book focuses on emphasizing ML for biomedical applications and provides a comprehensive summary of the past and present of AI, basics of ML, and clinical applications of ML within cardiovascular medicine for predictive analytics and precision medicine. It helps readers understand how ML works along with its limitations and strengths, such that they can could harness its computational power to streamline workflow and improve patient care. It is suitable for both clinicians and engineers; providing a template for clinicians to understand areas of application of machine learning within cardiovascular research; and assist computer scientists and engineers in evaluating current and future impact of machine learning on cardiovascular medicine.