دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [New ed.]
نویسندگان: Hui Jiang
سری:
ISBN (شابک) : 1108837042, 9781108837040
ناشر: Cambridge University Press
سال نشر: 2022
تعداد صفحات: 420
[423]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Machine Learning Fundamentals: A Concise Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی یادگیری ماشین: مقدمه ای مختصر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مقدمه روشن و قابل دسترس برای یادگیری ماشینی تحت نظارت، مفاهیم اصلی را به روشی متمرکز و منطقی ارائه میکند که برای مبتدیان آسان است. نویسنده محاسبات پایه، جبر خطی، احتمال و آمار را فرض میکند، اما هیچ مواجهه قبلی با یادگیری ماشین را ندارد. پوشش شامل روشهای سنتی پرکاربرد مانند SVM، درختهای تقویتشده، HMM و LDA، بهعلاوه روشهای یادگیری عمیق محبوب مانند شبکههای عصبی پیچشی، توجه، ترانسفورماتورها و GANها میشود. این متن که در یک چارچوب ارائه منسجم که بر تصویر کلی تأکید دارد سازماندهی شده است، هر روش را به طور واضح و مختصر «از ابتدا» بر اساس مبانی معرفی می کند. همه روشها و الگوریتمها با یک سبک تمیز و سازگار، با حداقل جزئیات غیر ضروری توصیف میشوند. مطالعات موردی متعدد و مثالهای عینی نشان میدهند که چگونه میتوان روشها را در زمینههای مختلف به کار برد.
This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely “from scratch” based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.
Front matter Copyright Contents Preface Notation 1 Introduction 1.1 What Is Machine Learning? 1.2 Basic Concepts in Machine Learning 1.2.1 Classification versus Regression 1.2.2 Supervised versus Unsupervised Learning 1.2.3 Simple versus Complex Models 1.2.4 Parametric versus Nonparametric Models 1.2.5 Overfitting versus Underfitting 1.2.6 Bias–Variance Trade-Off 1.3 General Principles in Machine Learning 1.3.1 Occam’s Razor 1.3.2 No-Free-Lunch Theorem 1.3.3 Law of the Smooth World 1.3.4 Curse of Dimensionality 1.4 Advanced Topics in Machine Learning 1.4.1 Reinforcement Learning 1.4.2 Meta-Learning 1.4.3 Causal Inference 1.4.4 Other Advanced Topics Exercises 2 Mathematical Foundation 2.1 Linear Algebra 2.1.1 Vectors and Matrices 2.1.2 Linear Transformation as Matrix Multiplication 2.1.3 Basic Matrix Operations 2.1.4 Eigenvalues and Eigenvectors 2.1.5 Matrix Calculus 2.2 Probability and Statistics 2.2.1 Random Variables and Distributions 2.2.2 Expectation: Mean, Variance, and Moments 2.2.3 Joint, Marginal, and Conditional Distributions 2.2.4 Common Probability Distributions 2.2.5 Transformation of Random Variables 2.3 Information Theory 2.3.1 Information and Entropy 2.3.2 Mutual Information 2.3.3 KL Divergence 2.4 Mathematical Optimization 2.4.1 General Formulation 2.4.2 Optimality Conditions 2.4.3 Numerical Optimization Methods Exercises 3 Supervised Machine Learning (in a Nutshell) 3.1 Overview 3.2 Case Studies 4 Feature Extraction 4.1 Feature Extraction: Concepts 4.1.1 Feature Engineering 4.1.2 Feature Selection 4.1.3 Dimensionality Reduction 4.2 Linear Dimension Reduction 4.2.1 Principal Component Analysis 4.2.2 Linear Discriminant Analysis 4.3 Nonlinear Dimension Reduction (I): Manifold Learning 4.3.1 Locally Linear Embedding 4.3.2 Multidimensional Scaling 4.3.3 Stochastic Neighborhood Embedding 4.4 Nonlinear Dimension Reduction (II): Neural Networks 4.4.1 Autoencoder 4.4.2 Bottleneck Features Lab Project I Exercises DISCRIMINATIVE MODELS 5 Statistical Learning Theory 5.1 Formulation of Discriminative Models 5.2 Learnability 5.3 Generalization Bounds 5.3.1 Finite Model Space: |H| 5.3.2 Infinite Model Space: VC Dimension Exercises 6 Linear Models 6.1 Perceptron 6.2 Linear Regression 6.3 Minimum Classification Error 6.4 Logistic Regression 6.5 Support Vector Machines 6.5.1 Linear SVM 6.5.2 Soft SVM 6.5.3 Nonlinear SVM: The Kernel Trick 6.5.4 Solving Quadratic Programming 6.5.5 Multiclass SVM Lab Project II Exercises 7 Learning Discriminative Models in General 7.1 A General Framework to Learn Discriminative Models 7.1.1 Common Loss Functions in Machine Learning 7.1.2 Regularization Based on Lp Norm 7.2 Ridge Regression and LASSO 7.3 Matrix Factorization 7.4 Dictionary Learning Lab Project III Exercises 8 Neural Networks 8.1 Artificial Neural Networks 8.1.1 Basic Formulation of Artificial Neural Networks 8.1.2 Mathematical Justification: Universal Approximator 8.2 Neural Network Structures 8.2.1 Basic Building Blocks to Connect Layers 8.2.2 Case Study I: Fully Connected Deep Neural Networks 8.2.3 Case Study II: Convolutional Neural Networks 8.2.4 Case Study III: Recurrent Neural Networks (RNNs) 8.2.5 Case Study IV: Transformer 8.3 Learning Algorithms for Neural Networks 8.3.1 Loss Function 8.3.2 Automatic Differentiation 8.3.3 Optimization Using Stochastic Gradient Descent 8.4 Heuristics and Tricks for Optimization 8.4.1 Other SGD Variant Optimization Methods: ADAM 8.4.2 Regularization 8.4.3 Fine-Tuning Tricks 8.5 End-to-End Learning 8.5.1 Sequence-to-Sequence Learning Lab Project IV Exercises 9 Ensemble Learning 9.1 Formulation of Ensemble Learning 9.1.1 Decision Trees 9.2 Bagging 9.2.1 Random Forests 9.3 Boosting 9.3.1 Gradient Boosting 9.3.2 AdaBoost 9.3.3 Gradient Tree Boosting Lab Project V Exercises GENERATIVE MODELS 10 Overview of Generative Models 10.1 Formulation of Generative Models 10.2 Bayesian Decision Theory 10.2.1 Generative Models for Classification 10.2.2 Generative Models for Regression 10.3 Statistical Data Modeling 10.3.1 Plug-In MAP Decision Rule 10.4 Density Estimation 10.4.1 Maximum-Likelihood Estimation 10.4.2 Maximum-Likelihood Classifier 10.5 Generative Models (in a Nutshell) 10.5.1 Generative versus Discriminative Models Exercises 11 Unimodal Models 11.1 Gaussian Models 11.2 Multinomial Models 11.3 Markov Chain Models 11.4 Generalized Linear Models 11.4.1 Probit Regression 11.4.2 Poisson Regression 11.4.3 Log-Linear Models Exercises 12 Mixture Models 12.1 Formulation of Mixture Models 12.1.1 Exponential Family (e-Family) 12.1.2 Formal Definition of Mixture Models 12.2 Expectation-Maximization Method 12.2.1 Auxiliary Function: Eliminating Log-Sum 12.2.2 Expectation-Maximization Algorithm 12.3 Gaussian Mixture Models 12.3.1 K-Means Clustering for Initialization 12.4 Hidden Markov Models 12.4.1 HMMs: Mixture Models for Sequences 12.4.2 Evaluation Problem: Forward–Backward Algorithm 12.4.3 Decoding Problem: Viterbi Algorithm 12.4.4 Training Problem: Baum–Welch Algorithm Lab Project VI Exercises 13 Entangled Models 13.1 Formulation of Entangled Models 13.1.1 Framework of Entangled Models 13.1.2 Learning of Entangled Models in General 13.2 Linear Gaussian Models 13.2.1 Probabilistic PCA 13.2.2 Factor Analysis 13.3 Non-Gaussian Models 13.3.1 Independent Component Analysis (ICA) 13.3.2 Independent Factor Analysis (IFA) 13.3.3 Hybrid Orthogonal Projection and Estimation (HOPE) 13.4 Deep Generative Models 13.4.1 Variational Autoencoders (VAE) 13.4.2 Generative Adversarial Nets (GAN) Exercises 14 Bayesian Learning 14.1 Formulation of Bayesian Learning 14.1.1 Bayesian Inference 14.1.2 Maximum a Posterior Estimation 14.1.3 Sequential Bayesian Learning 14.2 Conjugate Priors 14.2.1 Maximum-Marginal-Likelihood Estimation 14.3 Approximate Inference 14.3.1 Laplace’s Method 14.3.2 Variational Bayesian (VB) Methods 14.4 Gaussian Processes 14.4.1 Gaussian Processes as Nonparametric Priors 14.4.2 Gaussian Processes for Regression 14.4.3 Gaussian Processes for Classification Exercises 15 Graphical Models 15.1 Concepts of Graphical Models 15.2 Bayesian Networks 15.2.1 Conditional Independence 15.2.2 Representing Generative Models as Bayesian Networks 15.2.3 Learning Bayesian Networks 15.2.4 Inference Algorithms 15.2.5 Case Study I: Naive Bayes Classifier 15.2.6 Case Study II: Latent Dirichlet Allocation 15.3 Markov Random Fields 15.3.1 Formulation: Potential and Partition Functions 15.3.2 Case Study III: Conditional Random Fields 15.3.3 Case Study IV: Restricted Boltzmann Machines Exercises Appendix A Other Probability Distributions Bibliography Index