دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai سری: Adaptive Computation and Machine Learning Series ISBN (شابک) : 0262047071, 9780262047074 ناشر: The MIT Press سال نشر: 2022 تعداد صفحات: 324 [325] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning from Weak Supervision: An Empirical Risk Minimization Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی از نظارت ضعیف: رویکرد تجربی به حداقل رساندن ریسک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نظریه بنیادی و الگوریتمهای عملی طبقهبندی با نظارت
ضعیف، با تأکید بر رویکردی مبتنی بر به حداقل رساندن ریسک
تجربی.
تکنیکهای استاندارد یادگیری ماشین به مقادیر زیادی از دادههای
برچسبگذاری شده نیاز دارند تا به خوبی کار کنند. با این حال،
وقتی یادگیری ماشین را برای مشکلات دنیای فیزیکی اعمال می کنیم،
جمع آوری چنین مقادیری از داده های برچسب گذاری شده بسیار دشوار
است. در این کتاب Masashi Sugiyama، Han Bao، Takashi Ishida، Nan
Lu، Tomoya Sakai و Gang Niu نظریه و الگوریتمهایی را برای
یادگیری با نظارت ضعیف ارائه میکنند، الگوی یادگیری ماشین از
دادههای دارای برچسب ضعیف. این کتاب با تاکید بر رویکردی مبتنی
بر به حداقل رساندن ریسک تجربی و استفاده از تحقیقات پیشرفته در
یادگیری با نظارت ضعیف، هم مبانی این رشته و هم نظریههای ریاضی
پیشرفتهای را ارائه میکند. این کتاب می تواند به عنوان مرجعی
برای پزشکان و محققان و در کلاس درس استفاده شود.
این کتاب ابتدا مسائل طبقه بندی را به صورت ریاضی فرموله می کند،
نمادهای رایج را تعریف می کند و الگوریتم های مختلف را برای طبقه
بندی باینری و چند طبقه نظارت شده بررسی می کند. سپس مشکلات
طبقهبندی باینری با نظارت ضعیف را بررسی میکند، از جمله
طبقهبندی مثبت-بدون برچسب (PU)، طبقهبندی مثبت-منفی-بدون برچسب
(PNU) و طبقهبندی بدون برچسب-بدون برچسب (UU). سپس به طبقهبندی
چند طبقهای میپردازد و طبقهبندی برچسب مکمل (CL) و طبقهبندی
با برچسب جزئی (PL) را مورد بحث قرار میدهد. در نهایت، این کتاب
به مسائل پیشرفتهتر، از جمله یک خانواده از روشهای اصلاحی برای
بهبود عملکرد تعمیم یادگیری با نظارت ضعیف و مشکل تخمین کلاس قبلی
میپردازد.
Fundamental theory and practical algorithms of weakly
supervised classification, emphasizing an approach based on
empirical risk minimization.
Standard machine learning techniques require large amounts of
labeled data to work well. When we apply machine learning to
problems in the physical world, however, it is extremely
difficult to collect such quantities of labeled data. In this
book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya
Sakai and Gang Niu present theory and algorithms for weakly
supervised learning, a paradigm of machine learning from weakly
labeled data. Emphasizing an approach based on empirical risk
minimization and drawing on state-of-the-art research in weakly
supervised learning, the book provides both the fundamentals of
the field and the advanced mathematical theories underlying
them. It can be used as a reference for practitioners and
researchers and in the classroom.
The book first mathematically formulates classification
problems, defines common notations, and reviews various
algorithms for supervised binary and multiclass classification.
It then explores problems of binary weakly supervised
classification, including positive-unlabeled (PU)
classification, positive-negative-unlabeled (PNU)
classification, and unlabeled-unlabeled (UU) classification. It
then turns to multiclass classification, discussing
complementary-label (CL) classification and partial-label (PL)
classification. Finally, the book addresses more advanced
issues, including a family of correction methods to improve the
generalization performance of weakly supervised learning and
the problem of class-prior estimation.
Series Page Title Page Copyright Table of Contents Preface I. Machine Learning from Weak Supervision 1. Introduction 1.1. Machine Learning 1.1.1. Supervised Learning 1.1.2. Unsupervised Learning 1.1.3. Reinforcement Learning 1.2. Elements of Classification 1.2.1. Classifiers 1.2.2. Learning Criteria 1.2.3. Optimization Algorithms 1.3. Aspects of Machine Learning 1.3.1. Logical Learning, Biologically Inspired Learning, and Statistical Learning 1.3.2. Frequentist Learning and Bayesian Learning 1.3.3. Generative Classification and Discriminative Classification 1.3.4. Induction, Deduction, and Transduction 1.4. Improving Data Collection and Weakly Supervised Learning 1.5. Organization of This Book 1.5.1. Weakly Supervised Learning for Binary Classification 1.5.2. Weakly Supervised Learning for Multi-Class Classification 1.5.3. Advanced Topics and Perspectives 2. Formulation and Notation 2.1. Binary Classification 2.1.1. Formulation 2.1.2. Classification Models 2.1.2.1 Linear-in-input model 2.1.2.2 Linear-in-parameter model 2.1.2.3 Kernel model 2.1.2.4 Neural network model 2.1.3. Surrogate Losses 2.1.4. Training Samples 2.1.5. Regularization 2.2. Multi-Class Classification 2.2.1. Formulation 2.2.2. Surrogate Losses 2.2.3. Training Samples 3. Supervised Classification 3.1. Positive-Negative (PN) Classification 3.1.1. Formulation 3.1.1.1 One-sample case 3.1.1.2 Two-sample case 3.1.1.3 Comparison 3.1.2. Theoretical Analysis 3.1.2.1 Targets of convergence 3.1.2.2 Measures of convergence 3.1.2.3 Rademacher complexity 3.1.2.4 Rademacher complexity bounds 3.1.2.5 Estimation error bounds 3.2. Multi-Class Classification 3.2.1. Formulation 3.2.2. Theoretical Analysis 3.2.2.1 Estimation error bounds 3.2.2.2 Classification calibration II. Weakly Supervised Learning for Binary Classification 4. Positive-Unlabeled (PU) Classification 4.1. Introduction 4.2. Formulation 4.3. Unbiased Risk Estimation from PU Data 4.3.1. General Approach 4.3.2. Cost-Sensitive Approach 4.3.3. Convex Approach 4.4. Theoretical Analysis 4.4.1. PU Classification 4.4.2. NU Classification 4.4.3. Comparisons with PN Classification 4.4.3.1 Finite-sample comparisons 4.4.3.2 Asymptotic comparisons 5. Positive-Negative-Unlabeled (PNU) Classification 5.1. Introduction 5.2. Formulation 5.3. Manifold-Based Semi-Supervised Classification 5.3.1. Laplacian Regularization 5.3.2. Implementation 5.4. Information-Theoretic Semi-Supervised Classification 5.4.1. Squared-Loss Mutual Information Regularization 5.4.2. Implementation 5.5. PU+PN Classification 5.5.1. PNU and PU+NU Risk Estimators 5.5.2. PNU vs. PU+NU Classification 5.5.3. Theoretical Analysis 5.5.3.1 Estimation error bounds 5.5.3.2 Variance reduction 5.6. Experiments 5.6.1. Datasets 5.6.2. PNU Risk for Validation 5.6.3. Comparison with Other Methods 5.7. Extensions 5.7.1. Multi-Class Extension 5.7.2. AUC Maximization 5.7.3. Matrix Imputation 6. Positive-Confidence (Pconf) Classification 6.1. Introduction 6.2. Related Works 6.3. Problem Formulation 6.4. Empirical Risk Minimization (ERM) Framework 6.5. Theoretical Analysis 6.6. Implementation 6.7. Experiments 6.7.1. Synthetic Experiments with Linear Models 6.7.2. Benchmark Experiments with Neural Network Models 7. Pairwise-Constraint Classification 7.1. Introduction 7.2. Formulation 7.2.1. One-Sample Case 7.2.2. Two-Sample Case 7.2.3. Comparison of Sampling Schemes 7.2.4. Pairwise Constraints as Pointwise Data 7.3. Similar-Unlabeled (SU) Classification 7.3.1. Classification Risk Estimation 7.3.2. Minimum-Variance Risk Estimation 7.3.3. Convex Formulation 7.3.4. Class-Priors in SU Classification 7.4. Similar-Dissimilar (SD) and Dissimilar-Unlabeled (DU) Classification 7.4.1. Classification Risk Estimation 7.4.2. Interpretation of SD Risk 7.5. Similar-Dissimilar-Unlabeled (SDU) Classification 7.6. Theoretical Analysis 7.6.1. Derivation of Estimation Error Bounds 7.6.2. Comparison of Estimation Error Bounds 7.7. Experiments 7.7.1. Setup 7.7.2. Illustration of SU Classification 7.7.3. Comparison of SU Classification with Other Methods 7.7.4. Comparison of SDU Classification with Other Methods 7.8. Ongoing Research 8. Unlabeled-Unlabeled (UU) Classification 8.1. Introduction 8.2. Problem Formulation 8.2.1. Data Generation Process 8.2.2. Performance Measures 8.2.3. Relation to Classification with Noisy Labels 8.3. Risk Estimation from UU Data 8.3.1. Risk Estimation from One Set of U Data 8.3.2. Risk Estimation from Two Sets of U Data 8.3.2.1 Risk estimation 8.3.2.2 Simplification 8.3.2.3 Special cases 8.3.3. Theoretical Analysis 8.3.4. Experiments 8.3.4.1 Setup 8.3.4.2 Benchmark experiments with neural network models 8.3.4.3 Comparison with other methods 8.4. Generative Approach 8.4.1. Analysis of Bayes-Optimal Classifier 8.4.2. KDE-Based Algorithm 8.4.3. LSDD-Based Algorithm 8.4.4. DSDD-Based Algorithm 8.4.5. Experiments III. Weakly Supervised Learning for Multi-Class Classification 9. Complementary-Label Classification 9.1. Introduction 9.2. Risk Estimation from CL Data 9.2.1. Formulation 9.2.2. Risk Estimation 9.2.3. Case-Study for Symmetric Losses 9.2.4. Relation to Classification with Noisy Labels 9.3. Theoretical Analysis 9.4. Incorporation of Ordinary-Labels 9.5. Experiments 9.5.1. Experiments with CL 9.5.2. Experiments with CL and OL 9.6. Incorporation of Multi-Complementary-Labels 9.6.1. Formulation 9.6.2. Comparison with Multiple Single CLs 9.6.3. Unbiased Risk Estimator 9.6.4. Estimation Error Bound 10. Partial-Label Classification 10.1. Introduction 10.2. Formulation and Assumptions 10.2.1. Formulation 10.2.2. Data Generation Assumption 10.3. Risk Estimation 10.4. Experiments 10.5. Proper Partial-Label (PPL) Classification 10.5.1. Data Generation Assumption 10.5.2. Risk Estimation 10.5.3. Theoretical Analysis IV. Advanced Topics and Perspectives 11. Non-Negative Correction for Weakly Supervised Classification 11.1. Introduction 11.2. Overfitting of Unbiased Learning Objectives 11.2.1. Binary Classification 11.2.2. Multi-Class Classification 11.3. Numerical Illustration 11.4. Non-Negative Correction 11.4.1. nnPU Classification 11.4.2. nnPNU Classification 11.4.3. nnUU Classification 11.4.4. nnCL Classification 11.4.5. ccUU Classification 11.5. Theoretical Analyses 11.5.1. Bias and Consistency 11.5.2. Estimation Error 11.6. Experiments 11.6.1. Comparison of PN, uPU, and nnPU Classification 11.6.2. Comparison of uCL and nnCL Classification 11.6.3. Comparison of uUU and ccUU Classification 12. Class-Prior Estimation 12.1. Introduction 12.2. Full Distribution Matching 12.3. Mixture Proportion Estimation 12.3.1. Estimation Goal and Optimization Goal 12.3.2. Redefinition of Optimization Goal 12.3.3. Irreducibility Assumption 12.3.4. Anchor Set/Point Assumption 12.3.5. Remarks 12.4. Partial Distribution Matching 12.4.1. Formulation 12.4.2. Differentiable Divergences 12.4.3. Non-Differentiable Divergences 12.4.4. Empirical f-Divergence Estimation 12.5. Penalized L1-Distance Minimization 12.5.1. Penalized L1-Distance 12.5.2. Practical Implementation 12.5.3. Theoretical Analysis 12.5.3.1 Realizability assumption 12.5.3.2 Summary of main results 12.5.3.3 Proofs of main results 12.5.3.4 On the convergence rate of 12.6. Class-Prior Estimation with Regrouping 12.6.1. Motivation 12.6.2. Practical Implementation 12.6.3. Theoretical Justification 12.6.3.1 A formal definition of regrouping 12.6.3.2 Bias reduction 12.6.3.3 Convergence analysis 12.6.3.4 Computationally efficient identification of A* 12.6.3.5 Approximation of p’pwith a surrogate 12.7. Class-Prior Estimation from Pairwise Data 13. Conclusions and Prospects Bibliography Index Series List