دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022] نویسندگان: Christo El Morr, Manar Jammal, Hossam Ali-Hassan, Walid EI-Hallak سری: International Series in Operations Research & Management Science, 334 ISBN (شابک) : 3031169891, 9783031169892 ناشر: Springer سال نشر: 2022 تعداد صفحات: 474 [475] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning for Practical Decision Making: A Multidisciplinary Perspective with Applications from Healthcare, Engineering and Business Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی برای تصمیم گیری عملی: دیدگاهی چند رشته ای با برنامه های کاربردی از مراقبت های بهداشتی، مهندسی و تجزیه و تحلیل کسب و کار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمهای عملی بر یادگیری ماشین (ML) از دیدگاه چند رشتهای ارائه میکند که به پیشزمینهای در علم داده یا علوم رایانه نیاز ندارد. این ML را با استفاده از زبان ساده و یک رویکرد ساده که با مثالهای واقعی در زمینههایی مانند انفورماتیک سلامت، فناوری اطلاعات و تجزیه و تحلیل تجاری هدایت میشود، توضیح میدهد. این کتاب به خوانندگان کمک می کند تا الگوریتم های کلیدی مختلف، ابزارهای نرم افزاری اصلی و کاربردهای آنها را درک کنند. علاوه بر این، از طریق مثالهایی از حوزههای مراقبتهای بهداشتی و تجزیه و تحلیل کسبوکار، نشان میدهد که چگونه و چه زمانی ML میتواند به آنها در تصمیمگیری بهتر در رشتههای خود کمک کند.
این کتاب عمدتاً برای مقاطع کارشناسی و کارشناسی در نظر گرفته شده است. دانشجویان تحصیلات تکمیلی که در حال گذراندن دوره مقدماتی در یادگیری ماشین هستند. همچنین برای تحلیلگران داده و هر کسی که علاقه مند به یادگیری رویکردهای ML است مفید خواهد بود.
This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective that does not require a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics. The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines.
The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches.
Preface Contents Chapter 1: Introduction to Machine Learning 1.1 Introduction to Machine Learning 1.2 Origin of Machine Learning 1.3 Growth of Machine Learning 1.4 How Machine Learning Works 1.5 Machine Learning Building Blocks 1.5.1 Data Management and Exploration 1.5.1.1 Data, Information, and Knowledge 1.5.1.2 Big Data 1.5.1.3 OLAP Versus OLTP 1.5.1.4 Databases, Data Warehouses, and Data Marts 1.5.1.5 Multidimensional Analysis Techniques 1.5.1.5.1 Slicing and Dicing 1.5.1.5.2 Pivoting 1.5.1.5.3 Drill-Down, Roll-Up, and Drill-Across 1.5.2 The Analytics Landscape 1.5.2.1 Types of Analytics (Descriptive, Diagnostic, Predictive, Prescriptive) 1.5.2.1.1 Descriptive Analytics 1.5.2.1.2 Diagnostic Analytics 1.5.2.1.3 Predictive Analytics 1.5.2.1.4 Prescriptive Analytics 1.6 Conclusion 1.7 Key Terms 1.8 Test Your Understanding 1.9 Read More 1.10 Lab 1.10.1 Introduction to R 1.10.2 Introduction to RStudio 1.10.2.1 RStudio Download and Installation 1.10.2.2 Install a Package 1.10.2.3 Activate Package 1.10.2.4 User Readr to Load Data 1.10.2.5 Run a Function 1.10.2.6 Save Status 1.10.3 Introduction to Python and Jupyter Notebook IDE 1.10.3.1 Python Download and Installation 1.10.3.2 Jupyter Download and Installation 1.10.3.3 Load Data and Plot It Visually 1.10.3.4 Save the Execution 1.10.3.5 Load a Saved Execution 1.10.3.6 Upload a Jupyter Notebook File 1.10.4 Do It Yourself References Chapter 2: Statistics 2.1 Overview of the Chapter 2.2 Definition of General Terms 2.3 Types of Variables 2.3.1 Measures of Central Tendency 2.3.1.1 Measures of Dispersion 2.4 Inferential Statistics 2.4.1 Data Distribution 2.4.2 Hypothesis Testing 2.4.3 Type I and II Errors 2.4.4 Steps for Performing Hypothesis Testing 2.4.5 Test Statistics 2.4.5.1 Student´s t-test 2.4.5.2 One-Way Analysis of Variance 2.4.5.3 Chi-Square Statistic 2.4.5.4 Correlation 2.4.5.5 Simple Linear Regression 2.5 Conclusion 2.6 Key Terms 2.7 Test Your Understanding 2.8 Read More 2.9 Lab 2.9.1 Working Example in R 2.9.1.1 Statistical Measures Overview 2.9.1.2 Central Tendency Measures in R 2.9.1.3 Dispersion in R 2.9.1.4 Statistical Test Using p-value in R 2.9.2 Working Example in Python 2.9.2.1 Central Tendency Measure in Python 2.9.2.2 Dispersion Measures in Python 2.9.2.3 Statistical Testing Using p-value in Python 2.9.3 Do It Yourself 2.9.4 Do More Yourself (Links to Available Datasets for Use) References Chapter 3: Overview of Machine Learning Algorithms 3.1 Introduction 3.2 Data Mining 3.3 Analytics and Machine Learning 3.3.1 Terminology Used in Machine Learning 3.3.2 Machine Learning Algorithms: A Classification 3.4 Supervised Learning 3.4.1 Multivariate Regression 3.4.1.1 Multiple Linear Regression 3.4.1.2 Multiple Logistic Regression 3.4.2 Decision Trees 3.4.3 Artificial Neural Networks 3.4.3.1 Perceptron 3.4.4 Naïve Bayes Classifier 3.4.5 Random Forest 3.4.6 Support Vector Machines (SVM) 3.5 Unsupervised Learning 3.5.1 K-Means 3.5.2 K-Nearest Neighbors (KNN) 3.5.3 AdaBoost 3.6 Applications of Machine Learning 3.6.1 Machine Learning Demand Forecasting and Supply Chain Performance [42] 3.6.2 A Case Study on Cervical Pain Assessment with Motion Capture [43] 3.6.3 Predicting Bank Insolvencies Using Machine Learning Techniques [44] 3.6.4 Deep Learning with Convolutional Neural Network for Objective Skill Evaluation in Robot-Assisted Surgery [45] 3.7 Conclusion 3.8 Key Terms 3.9 Test Your Understanding 3.10 Read More 3.11 Lab 3.11.1 Machine Learning Overview in R 3.11.1.1 Caret Package 3.11.1.2 ggplot2 Package 3.11.1.3 mlBench Package 3.11.1.4 Class Package 3.11.1.5 DataExplorer Package 3.11.1.6 Dplyr Package 3.11.1.7 KernLab Package 3.11.1.8 Mlr3 Package 3.11.1.9 Plotly Package 3.11.1.10 Rpart Package 3.11.2 Supervised Learning Overview 3.11.2.1 KNN Diamonds Example 3.11.2.1.1 Loading KNN Algorithm Package 3.11.2.1.2 Loading Dataset for KNN 3.11.2.1.3 Preprocessing Data 3.11.2.1.4 Scaling Data 3.11.2.1.5 Splitting Data and Applying KNN Algorithm 3.11.2.1.6 Model Performance 3.11.3 Unsupervised Learning Overview 3.11.3.1 Loading K-Means Clustering Package 3.11.3.2 Loading Dataset for K-Means Clustering Algorithm 3.11.3.3 Preprocessing Data 3.11.3.4 Executing K-Means Clustering Algorithm 3.11.3.5 Results Discussion 3.11.4 Python Scikit-Learn Package Overview 3.11.5 Python Supervised Learning Machine (SML) 3.11.5.1 Using Scikit-Learn Package 3.11.5.2 Loading Diamonds Dataset Using Python 3.11.5.3 Preprocessing Data 3.11.5.4 Splitting Data and Executing Linear Regression Algorithm 3.11.5.5 Model Performance Explanation 3.11.5.6 Classification Performance 3.11.6 Unsupervised Machine Learning (UML) 3.11.6.1 Loading Dataset for Hierarchical Clustering Algorithm 3.11.6.2 Running Hierarchical Algorithm and Plotting Data 3.11.7 Do It Yourself 3.11.8 Do More Yourself References Chapter 4: Data Preprocessing 4.1 The Problem 4.2 Data Preprocessing Steps 4.2.1 Data Collection 4.2.2 Data Profiling, Discovery, and Access 4.2.3 Data Cleansing and Validation 4.2.4 Data Structuring 4.2.5 Feature Selection 4.2.6 Data Transformation and Enrichment 4.2.7 Data Validation, Storage, and Publishing 4.3 Feature Engineering 4.3.1 Feature Creation 4.3.2 Transformation 4.3.3 Feature Extraction 4.4 Feature Engineering Techniques 4.4.1 Imputation 4.4.1.1 Numerical Imputation 4.4.1.2 Categorical Imputation 4.4.2 Discretizing Numerical Features 4.4.3 Converting Categorical Discrete Features to Numeric (Binarization) 4.4.4 Log Transformation 4.4.5 One-Hot Encoding 4.4.6 Scaling 4.4.6.1 Normalization (Min-Max Normalization) 4.4.6.2 Standardization (Z-Score Normalization) 4.4.7 Reduce the Features Dimensionality 4.5 Overfitting 4.6 Underfitting 4.7 Model Selection: Selecting the Best Performing Model of an Algorithm 4.7.1 Model Selection Using the Holdout Method 4.7.2 Model Selection Using Cross-Validation 4.7.3 Evaluating Model Performance in Python 4.8 Data Quality 4.9 Key Terms 4.10 Test Your Understanding 4.11 Read More 4.12 Lab 4.12.1 Working Example in Python 4.12.1.1 Read the Dataset 4.12.1.2 Split the Dataset 4.12.1.3 Impute Data 4.12.1.4 One-Hot-Encode Data 4.12.1.5 Scale Numeric Data: Standardization 4.12.1.6 Create Pipelines 4.12.1.7 Creating Models 4.12.1.8 Cross-Validation 4.12.1.9 Hyperparameter Finetuning 4.12.2 Working Example in Weka 4.12.2.1 Missing Values 4.12.2.2 Discretization (or Binning) 4.12.2.3 Data Normalization and Standardization 4.12.2.4 One-Hot-Encoding (Nominal to Numeric) 4.12.3 Do It Yourself 4.12.3.1 Lenses Dataset 4.12.3.2 Nested Cross-Validation 4.12.4 Do More Yourself References Chapter 5: Data Visualization 5.1 Introduction 5.2 Presentation and Visualization of Information 5.2.1 A Taxonomy of Graphs 5.2.2 Relationships and Graphs 5.2.3 Dashboards 5.2.4 Infographics 5.3 Building Effective Visualizations 5.4 Data Visualization Software 5.5 Conclusion 5.6 Key Terms 5.7 Test Your Understanding 5.8 Read More 5.9 Lab 5.9.1 Working Example in Tableau 5.9.1.1 Getting a Student Copy of Tableau Desktop 5.9.1.2 Learning with Tableau´s how-to Videos and Resources 5.9.2 Do It Yourself 5.9.2.1 Assignment 1: Introduction to Tableau 5.9.2.2 Assignment 2: Data Manipulation and Basic Charts with Tableau 5.9.3 Do More Yourself 5.9.3.1 Assignment 3: Charts and Dashboards with Tableau 5.9.3.2 Assignment 4: Analytics with Tableau References Chapter 6: Linear Regression 6.1 The Problem 6.2 A Practical Example 6.3 The Algorithm 6.3.1 Modeling the Linear Regression 6.3.2 Gradient Descent 6.3.3 Gradient Descent Example 6.3.4 Batch Versus Stochastic Gradient Descent 6.3.5 Examples of Error Functions 6.3.6 Gradient Descent Types 6.3.6.1 Stochastic Gradient Descent 6.3.6.2 Batch Gradient 6.4 Final Notes: Advantages, Disadvantages, and Best Practices 6.5 Key Terms 6.6 Test Your Understanding 6.7 Read More 6.8 Lab 6.8.1 Working Example in R 6.8.1.1 Load Diabetes Dataset 6.8.1.2 Preprocess Diabetes Dataset 6.8.1.3 Choose Dependent and Independent Variables 6.8.1.4 Visualize Your Dataset 6.8.1.5 Split Data into Test and Train Datasets 6.8.1.6 Create Linear Regression Model and Visualize it 6.8.1.7 Calculate Confusion Matrix 6.8.1.8 Gradient Descent 6.8.2 Working Example in Python 6.8.2.1 Load USA House Prices Dataset 6.8.2.2 Explore Housing Prices Visually 6.8.2.3 Preprocess Data 6.8.2.4 Split Data and Scale Features 6.8.2.5 Create and Visualize Model Using the LinearRegression Algorithm 6.8.2.6 Evaluate Performance of LRM 6.8.2.7 Optimize LRM Manually with Gradient Descent 6.8.2.8 Create and Visualize a Model Using the Stochastic Gradient Descent (SGD) 6.8.3 Working Example in Weka 6.8.4 Do It Yourself 6.8.4.1 Methods, Arguments, and Regularization 6.8.4.1.1 Methods and Arguments 6.8.4.1.2 Regularization 6.8.4.2 Predicting House Prices 6.8.5 Do More Yourself References Chapter 7: Logistic Regression 7.1 The Problem 7.2 A Practical Example 7.3 The Algorithm 7.4 Final Notes: Advantages, Disadvantages, and Best Practices 7.5 Key Terms 7.6 Test Your Understanding 7.7 Read More 7.8 Lab 7.8.1 Working Example in Python 7.8.1.1 Load Pima Indians Diabetes Dataset 7.8.1.2 Visualize Pima Indians Dataset 7.8.1.3 Preprocess Data 7.8.1.4 Optimize Logistic Regression Model 7.8.2 Working Example in Weka 7.8.3 Do It Yourself 7.8.3.1 Predicting Online Purchases 7.8.3.2 Predicting Click-Through Advertisements 7.8.4 Do More Yourself References Chapter 8: Decision Trees 8.1 The Problem 8.2 A Practical Example 8.3 The Algorithm 8.3.1 Tree Basics 8.3.2 Training Decision Trees 8.3.3 A Generic Algorithm 8.3.4 Tree Pruning 8.4 Final Notes: Advantages, Disadvantages, and Best Practices 8.5 Key Terms 8.6 Test Your Understanding 8.7 Read More 8.8 Lab 8.8.1 Working Example in Python 8.8.1.1 Load Car Evaluation Dataset 8.8.1.2 Visualize Car Evaluation 8.8.1.3 Split and Scale Data 8.8.1.4 Optimize Decision Tree Model 8.8.2 Working Example in Weka 8.8.3 Do It Yourself 8.8.3.1 Decision Tree: Reflections on the Car Evaluation Dataset 8.8.3.2 Decision Trees for Regression 8.8.3.3 Decision Trees for Classification 8.8.4 Do More Yourself References Chapter 9: Naïve Bayes 9.1 The Problem 9.2 The Algorithm 9.2.1 Bayes Theorem 9.2.2 The Naïve Bayes Classifier (NBC): Dealing with Categorical Variables 9.2.3 Gaussian Naïve Bayes (GNB): Dealing with Continuous Variables 9.3 A Practical Example 9.3.1 Naïve Bayes Classifier with Categorical Variables Example 9.3.2 Gaussian Naïve Bayes Example 9.4 Final Notes: Advantages, Disadvantages, and Best Practices 9.5 Key Terms 9.6 Test Your Understanding 9.7 Read More 9.8 Lab 9.8.1 Working Example in Python 9.8.1.1 Load Social Network Ads Dataset 9.8.1.2 Visualize Social Network Ads Dataset 9.8.1.3 Choose Features and Normalize Data 9.8.1.4 Optimize GNB Model Using Hyperparameter 9.8.2 Working Example in Weka 9.8.3 Do It Yourself 9.8.3.1 Building a Movie Recommender System 9.8.3.2 Predicting Flower Types 9.8.4 Do More Yourself References Chapter 10: K-Nearest Neighbors 10.1 The Problem 10.2 A Practical Example 10.2.1 A Classification 10.2.2 Regression 10.3 The Algorithm 10.3.1 Distance Function 10.3.1.1 Euclidean Distance 10.3.1.2 Manhattan Distance 10.3.1.3 Minkowski Distance 10.3.1.4 Cosine Similarity 10.3.1.5 Hamming Distance 10.3.2 KNN for Classification 10.3.3 KNN for Regression 10.4 Final Notes: Advantages, Disadvantages, and Best Practices 10.5 Key Terms 10.6 Test Your Understanding 10.7 Read More 10.8 Lab 10.8.1 Working Example in Python 10.8.1.1 Load Iris Dataset 10.8.1.2 Data Cleaning and Visualization 10.8.1.3 Split and Scale Data 10.8.1.4 Optimize KNN Model Using Grid Search Cross-Validation 10.8.2 Working Example in Weka 10.8.3 Do It Yourself 10.8.3.1 Iris Data Set Revisited 10.8.3.2 Predict the Age of Abalone from Physical Measurement 10.8.3.3 Prostate Cancer 10.8.4 Do More Yourself References Chapter 11: Neural Networks 11.1 The Problem 11.2 A Practical Example 11.2.1 Example 1 11.3 The Algorithm 11.3.1 The McCulloch-Pitts Neuron 11.3.2 The Perceptron 11.3.3 The Perceptron as a Linear Function 11.3.4 Activation Functions 11.3.4.1 The Sigmoid Function 11.3.4.2 The Tanh Function 11.3.4.3 The ReLU Function 11.3.4.4 The Leaky ReLU Function 11.3.4.5 The Parameterized ReLU Function 11.3.4.6 The Swish Function 11.3.4.7 The SoftMax Function 11.3.4.8 Which Activation Function to Choose? 11.3.5 Training the Perceptron 11.3.6 Perceptron Limitations: XOR Modeling 11.3.7 Multilayer Perceptron (MLP) 11.3.8 MLP Algorithm Overview 11.3.9 Backpropagation 11.3.9.1 Simple 1-1-1 Network 11.3.9.1.1 Computation with Respect to Layer L-1 11.3.9.1.2 Computation with Respect to Layer L-2 11.3.9.2 Fully Connected Neural Network 11.3.9.2.1 Computation with Respect to Layer L-1 11.3.9.2.2 Computation with Respect to Layer L-2 11.3.10 Backpropagation Algorithm 11.4 Final Notes: Advantages, Disadvantages, and Best Practices 11.5 Key Terms 11.6 Test Your Understanding 11.7 Read More 11.8 Lab 11.8.1 Working Example in Python 11.8.1.1 Load Diabetes for Pima Indians Dataset 11.8.1.2 Visualize Data 11.8.1.3 Split Dataset into Training and Testing Datasets 11.8.1.4 Create Neural Network Model 11.8.1.5 Optimize Neural Network Model Using Hyperparameter 11.8.2 Working Example in Weka 11.8.3 Do it Yourself 11.8.3.1 Diabetes Revisited 11.8.3.2 Choose your Own Problem 11.8.4 Do More Yourself References Chapter 12: K-Means 12.1 The Problem 12.2 A Practical Example 12.3 The Algorithm 12.4 Inertia 12.5 Minibatch K-Means 12.6 Final Notes: Advantages, Disadvantages, and Best Practices 12.7 Key Terms 12.8 Test Your Understanding 12.9 Read More 12.10 Lab 12.10.1 Working Example in Python 12.10.1.1 Load Person´s Demographics 12.10.1.2 Data Visualization and Cleaning 12.10.1.3 Data preprocessing 12.10.1.4 Choosing Features and Scaling Data 12.10.1.5 Finding the Best K for the K-Means Model 12.10.2 Do It Yourself 12.10.2.1 The Iris Dataset Revisited 12.10.2.2 K-Means for Dimension Reduction 12.10.3 Do More Yourself References Chapter 13: Support Vector Machine 13.1 The Problem 13.2 The Algorithm 13.2.1 Important Concepts 13.2.2 Margin 13.2.2.1 Functional Margin 13.2.2.2 Geometric Margin 13.2.3 Types of Support Vector Machines 13.2.3.1 Linear Support Vector Machine 13.2.3.2 Soft Margin Classifier 13.2.3.2.1 Hard Margin Classifier 13.2.3.3 Nonlinear Support Vector Machine 13.2.4 Classification 13.2.5 Regression 13.2.6 Tuning Parameters 13.2.6.1 Regularization 13.2.6.2 Gamma 13.2.6.3 Margins 13.2.7 Kernel 13.2.7.1 Linear Kernel 13.2.7.2 Polynomial Kernel 13.2.7.3 Radial Basis Function (RBF) Kernel 13.3 Advantages, Disadvantages, and Best Practices 13.4 Key Terms 13.5 Test Your Understanding 13.6 Read More 13.7 Lab 13.7.1 Working Example in Python 13.7.1.1 Loading Iris Dataset 13.7.1.1.1 Visualize Iris Dataset 13.7.1.2 Preprocess and Scale Data 13.7.1.3 Dimension Reduction 13.7.1.4 Hyperparameter Tuning and Performance Measurements 13.7.1.5 Plot the Decision Boundaries 13.7.2 Do It Yourself 13.7.2.1 The Iris Dataset Revisited 13.7.2.2 Breast Cancer 13.7.2.3 Wine Classification 13.7.2.4 Face Recognition 13.7.2.5 SVM Regressor: Predict House Prices with SVR 13.7.2.6 SVM Regressor: Predict Diabetes with SVR 13.7.2.7 Unsupervised SVM 13.7.3 Do More Yourself References Chapter 14: Voting and Bagging 14.1 The Problem 14.2 Voting Algorithm 14.3 Bagging Algorithm 14.4 Random Forest 14.5 Voting Example 14.6 Bagging Example: Random Forest 14.7 Final Notes: Advantages, Disadvantages, and Best Practices 14.8 Key Terms 14.9 Test Your Understanding 14.10 Read More 14.11 Lab 14.11.1 A working Example in Python 14.11.1.1 Load Titanic Dataset 14.11.1.2 Visualizing Titanic Dataset 14.11.1.3 Preprocess and Manipulate Data 14.11.1.4 Create Bagging and Voting Models 14.11.1.5 Evaluate Bagging and Voting Model´s 14.11.1.6 Optimize the Bagging and Voting Models 14.11.2 Do It Yourself 14.11.2.1 The Titanic revisited 14.11.2.2 The Diabetes Dataset 14.11.3 Do More Yourself References Chapter 15: Boosting and Stacking 15.1 The Problem 15.2 Boosting 15.3 Stacking 15.4 Boosting Example 15.4.1 AdaBoost Algorithm 15.4.2 AdaBoost Example 15.5 Key Terms 15.6 Test Your Understanding 15.7 Read More 15.8 Lab 15.8.1 A Working Example in Python 15.8.1.1 Loading Heart Dataset 15.8.1.2 Visualizing Heart Dataset 15.8.1.3 Preprocess Data 15.8.1.4 Split and Scale Data 15.8.1.5 Create AdaBoost and Stacking Models 15.8.1.6 Evaluate the AdaBoost and the Stacking Models 15.8.1.7 Optimizing the Stacking and AdaBoost Models 15.8.2 Do It Yourself 15.8.2.1 The Heart Disease Dataset Revisited 15.8.2.2 The Iris Dataset 15.8.3 Do More Yourself References Chapter 16: Future Directions and Ethical Considerations 16.1 Introduction 16.2 Current AI Applications 16.3 Future Directions 16.3.1 Democratized AI 16.3.2 Edge AI 16.3.3 Responsible AI 16.3.4 Generative AI 16.4 Ethical Concerns 16.4.1 Ethical Frameworks 16.5 Conclusion 16.6 Key Terms 16.7 Test Your Understanding 16.8 Read More References Index