دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Stefan Jansen
سری:
ISBN (شابک) : 1839217715, 9781839217715
ناشر: Packt Publishing
سال نشر: 2020
تعداد صفحات: 821
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Machine Learning for Algorithmic Trading: Predictive models to extract signals from market and alternative data for systematic trading strategies with Python, 2nd Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی برای تجارت الگوریتمی: مدل های پیش بینی برای استخراج سیگنال ها از بازار و داده های جایگزین برای استراتژی های معاملاتی سیستماتیک با Python ، نسخه 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با استفاده از پانداها، TA-Lib، scikit-learn، LightGBM، SpaCy، Gensim، TensorFlow 2، Zipline، Backtrader، Alphalens، از یادگیری ماشین برای طراحی و آزمایش مجدد استراتژیهای معاملاتی خودکار برای بازارهای دنیای واقعی استفاده کنید. pyfolio.
رشد انفجاری داده های دیجیتال، تقاضا برای تخصص در استراتژی های معاملاتی که از یادگیری ماشین (ML) استفاده می کنند، افزایش داده است. این ویرایش دوم اصلاحشده و توسعهیافته به شما امکان میدهد مدلهای یادگیری پیشرفته نظارتشده، بدون نظارت و تقویتی را بسازید و ارزیابی کنید.
این کتاب یادگیری ماشینی سرتاسری را برای گردش کار معاملاتی، از مهندسی ایده و ویژگیها معرفی میکند. برای مدل سازی بهینه سازی، طراحی استراتژی و بک تست. این موضوع را با استفاده از مثالهایی از مدلهای خطی و مجموعههای مبتنی بر درخت تا تکنیکهای یادگیری عمیق از تحقیقات پیشرفته نشان میدهد.
این نسخه نحوه کار با دادههای بازار، بنیادی و جایگزین، مانند تیک را نشان میدهد. داده ها، نوارهای دقیقه و روزانه، پرونده های SEC، رونوشت تماس های درآمدی، اخبار مالی، یا تصاویر ماهواره ای برای تولید سیگنال های قابل معامله. این نشان میدهد که چگونه میتوان ویژگیهای مالی یا عوامل آلفا را مهندسی کرد که یک مدل ML را قادر میسازد تا بازدهی از دادههای قیمت را برای سهام ایالات متحده و بینالمللی و ETFها پیشبینی کند. همچنین نحوه ارزیابی محتوای سیگنال ویژگیهای جدید را با استفاده از مقادیر Alphalens و SHAP نشان میدهد و شامل یک پیوست جدید با بیش از صد مثال عامل آلفا میشود.
در پایان، شما در ترجمه پیشبینیهای مدل ML مهارت خواهید داشت. به یک استراتژی معاملاتی که در افق های روزانه یا درون روز عمل می کند و در ارزیابی عملکرد آن.
اگر شما یک داده هستید تحلیلگر، دانشمند داده، توسعهدهنده پایتون، تحلیلگر سرمایهگذاری، یا مدیر پورتفولیو علاقهمند به کسب دانش یادگیری ماشینی عملی برای تجارت، این کتاب برای شماست. اگر می خواهید بیاموزید که چگونه با استفاده از یادگیری ماشین، ارزش را از مجموعه متنوعی از منابع داده استخراج کنید تا استراتژی های معاملاتی سیستماتیک خود را طراحی کنید، این کتاب برای شما مناسب است.
آشنایی با پایتون و تکنیک های یادگیری ماشین لازم است.
(نکته لطفاً از گزینه Look Inside برای مشاهده بیشتر استفاده کنید فصل)
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio.
The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.
This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research.
This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples.
By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies.
Some understanding of Python and machine learning techniques is required.
(N.B. Please use the Look Inside option to see further chapters)
Cover Copyright Packt Page Contributors Table of Contents Preface Chapter 1: Machine Learning for Trading – From Idea to Execution The rise of ML in the investment industry From electronic to high-frequency trading Factor investing and smart beta funds Algorithmic pioneers outperform humans ML and alternative data Crowdsourcing trading algorithms Designing and executing an ML-driven strategy Sourcing and managing data From alpha factor research to portfolio management Strategy backtesting ML for trading – strategies and use cases The evolution of algorithmic strategies Use cases of ML for trading Summary Chapter 2: Market and Fundamental Data – Sources and Techniques Market data reflects its environment Market microstructure – the nuts and bolts How to trade – different types of orders Where to trade – from exchanges to dark pools Working with high-frequency data How to work with Nasdaq order book data Communicating trades with the FIX protocol The Nasdaq TotalView-ITCH data feed From ticks to bars – how to regularize market data AlgoSeek minute bars – equity quote and trade data API access to market data Remote data access using pandas yfinance – scraping data from Yahoo! Finance Quantopian Zipline Quandl Other market data providers How to work with fundamental data Financial statement data Other fundamental data sources Efficient data storage with pandas Summary Chapter 3: Alternative Data for Finance – Categories and Use Cases The alternative data revolution Sources of alternative data Individuals Business processes Sensors Criteria for evaluating alternative data Quality of the signal content Quality of the data Technical aspects The market for alternative data Data providers and use cases Working with alternative data Scraping OpenTable data Scraping and parsing earnings call transcripts Summary Chapter 4: Financial Feature Engineering – How to Research Alpha Factors Alpha factors in practice – from data to signals Building on decades of factor research Momentum and sentiment – the trend is your friend Value factors – hunting fundamental bargains Volatility and size anomalies Quality factors for quantitative investing Engineering alpha factors that predict returns How to engineer factors using pandas and NumPy How to use TA-Lib to create technical alpha factors Denoising alpha factors with the Kalman filter How to preprocess your noisy signals using wavelets From signals to trades – Zipline for backtests How to backtest a single-factor strategy Combining factors from diverse data sources Separating signal from noise with Alphalens Creating forward returns and factor quantiles Predictive performance by factor quantiles The information coefficient Factor turnover Alpha factor resources Alternative algorithmic trading libraries Summary Chapter 5: Portfolio Optimization and Performance Evaluation How to measure portfolio performance Capturing risk-return trade-offs in a single number The fundamental law of active management How to manage portfolio risk and return The evolution of modern portfolio management Mean-variance optimization Alternatives to mean-variance optimization Risk parity Risk factor investment Hierarchical risk parity Trading and managing portfolios with Zipline Scheduling signal generation and trade execution Implementing mean-variance portfolio optimization Measuring backtest performance with pyfolio Creating the returns and benchmark inputs Walk-forward testing – out-of-sample returns Summary Chapter 6: The Machine Learning Process How machine learning from data works The challenge – matching the algorithm to the task Supervised learning – teaching by example Unsupervised learning – uncovering useful patterns Reinforcement learning – learning by trial and error The machine learning workflow Basic walkthrough – k-nearest neighbors Framing the problem – from goals to metrics Collecting and preparing the data Exploring, extracting, and engineering features Selecting an ML algorithm Design and tune the model How to select a model using cross-validation How to implement cross-validation in Python Challenges with cross-validation in finance Parameter tuning with scikit-learn and Yellowbrick Summary Chapter 7: Linear Models – From Risk Factors to Return Forecasts From inference to prediction The baseline model – multiple linear regression How to formulate the model How to train the model The Gauss–Markov theorem How to conduct statistical inference How to diagnose and remedy problems How to run linear regression in practice OLS with statsmodels Stochastic gradient descent with sklearn How to build a linear factor model From the CAPM to the Fama–French factor models Obtaining the risk factors Fama–Macbeth regression Regularizing linear regression using shrinkage How to hedge against overfitting How ridge regression works How lasso regression works How to predict returns with linear regression Preparing model features and forward returns Linear OLS regression using statsmodels Linear regression using scikit-learn Ridge regression using scikit-learn Lasso regression using sklearn Comparing the quality of the predictive signals Linear classification The logistic regression model How to conduct inference with statsmodels Predicting price movements with logistic regression Summary Chapter 8: The ML4T Workflow – From ML Model to Strategy Backtest How to backtest an ML-driven strategy Backtesting pitfalls and how to avoid them Getting the data right Getting the simulation right Getting the statistics right How a backtesting engine works Vectorized versus event-driven backtesting Key implementation aspects backtrader – a flexible tool for local backtests Key concepts of backtrader's Cerebro architecture How to use backtrader in practice backtrader summary and next steps Zipline – scalable backtesting by Quantopian Calendars and the Pipeline for robust simulations Ingesting your own bundles with minute data The Pipeline API – backtesting an ML signal How to train a model during the backtest Instead of How to use Summary Chapter 9: Time-Series Models for Volatility Forecasts and Statistical Arbitrage Tools for diagnostics and feature extraction How to decompose time-series patterns Rolling window statistics and moving averages How to measure autocorrelation How to diagnose and achieve stationarity Transforming a time series to achieve stationarity Handling instead of How to handle Time-series transformations in practice Univariate time-series models How to build autoregressive models How to build moving-average models How to build ARIMA models and extensions How to forecast macro fundamentals How to use time-series models to forecast volatility Multivariate time-series models Systems of equations The vector autoregressive (VAR) model Using the VAR model for macro forecasts Cointegration – time series with a shared trend The Engle-Granger two-step method The Johansen likelihood-ratio test Statistical arbitrage with cointegration How to select and trade comoving asset pairs Pairs trading in practice Preparing the strategy backtest Backtesting the strategy using backtrader Extensions – how to do better Summary Chapter 10: Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading How Bayesian machine learning works How to update assumptions from empirical evidence Exact inference – maximum a posteriori estimation Deterministic and stochastic approximate inference Probabilistic programming with PyMC3 Bayesian machine learning with Theano The PyMC3 workflow: predicting a recession Bayesian ML for trading Bayesian Sharpe ratio for performance comparison Bayesian rolling regression for pairs trading Stochastic volatility models Summary Chapter 11: Random Forests – A Long-Short Strategy for Japanese Stocks Decision trees – learning rules from data How trees learn and apply decision rules Decision trees in practice Overfitting and regularization Hyperparameter tuning Random forests – making trees more reliable Why ensemble models perform better Boostrap aggregation How to build a random forest How to train and tune a random forest Feature importance for random forests Out-of-bag testing Pros and cons of random forests Long-short signals for Japanese stocks The data – Japanese equities The ML4T workflow with LightGBM The strategy – backtest with Zipline Summary Chapter 12: Boosting Your Trading Strategy Getting started – adaptive boosting The AdaBoost algorithm Using AdaBoost to predict monthly price moves Gradient boosting – ensembles for most tasks How to train and tune GBM models How to use gradient boosting with sklearn Using XGBoost, LightGBM, and CatBoost How algorithmic innovations boost performance A long-short trading strategy with boosting Generating signals with LightGBM and CatBoost Inside the black box - interpreting GBM results Backtesting a strategy based on a boosting ensemble Lessons learned and next steps Boosting for an intraday strategy Engineering features for high-frequency data Minute-frequency signals with LightGBM Evaluating the trading signal quality Summary Chapter 13: Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning Dimensionality reduction The curse of dimensionality Linear dimensionality reduction Manifold learning – nonlinear dimensionality reduction PCA for trading Data-driven risk factors Eigenportfolios Clustering k-means clustering Hierarchical clustering Density-based clustering Gaussian mixture models Hierarchical clustering for optimal portfolios How hierarchical risk parity works Backtesting HRP using an ML trading strategy Summary Chapter 14: Text Data for Trading – Sentiment Analysis ML with text data – from language to features Key challenges of working with text data The NLP workflow Applications From text to tokens – the NLP pipeline NLP pipeline with spaCy and textacy NLP with TextBlob Counting tokens – the document-term matrix The bag-of-words model Document-term matrix with scikit-klearn Key lessons instead of lessons learned NLP for trading The naive Bayes classifier Classifying news articles Sentiment analysis with Twitter and Yelp data Summary Chapter 15: Topic Modeling – Summarizing Financial News Learning latent topics – Goals and approaches How to implement LSI using sklearn Strengths and limitations Probabilistic latent semantic analysis How to implement pLSA using sklearn Strengths and limitations Latent Dirichlet allocation How LDA works How to evaluate LDA topics How to implement LDA using sklearn How to visualize LDA results using pyLDAvis How to implement LDA using Gensim Modeling topics discussed in earnings calls Data preprocessing Model training and evaluation Running experiments Topic modeling for with financial news Summary Chapter 16: Word Embeddings for Earnings Calls and SEC Filings How word embeddings encode semantics How neural language models learn usage in context word2vec – scalable word and phrase embeddings Evaluating embeddings using semantic arithmetic How to use pretrained word vectors GloVe – Global vectors for word representation Custom embeddings for financial news Preprocessing – sentence detection and n-grams The skip-gram architecture in TensorFlow 2 Visualizing embeddings using TensorBoard How to train embeddings faster with Gensim word2vec for trading with SEC filings Preprocessing – sentence detection and n-grams Model training Sentiment analysis using doc2vec embeddings Creating doc2vec input from Yelp sentiment data Training a doc2vec model Training a classifier with document vectors Lessons learned and next steps New frontiers – pretrained transformer models Attention is all you need BERT – towards a more universal language model Trading on text data – lessons learned and next steps Summary Chapter 17: Deep Learning for Trading Deep learning – what's new and why it matters Hierarchical features tame high-dimensional data DL as representation learning How DL relates to ML and AI Designing an NN A simple feedforward neural network architecture Key design choices How to regularize deep NNs Training faster – optimizations for deep learning Summary – how to tune key hyperparameters A neural network from scratch in Python The input layer The hidden layer The output layer Forward propagation The cross-entropy cost function How to implement backprop using Python Popular deep learning libraries Leveraging GPU acceleration How to use TensorFlow 2 How to use TensorBoard How to use PyTorch 1.4 Alternative options Optimizing an NN for a long-short strategy Engineering features to predict daily stock returns Defining an NN architecture framework Cross-validating design options to tune the NN Evaluating the predictive performance Backtesting a strategy based on ensembled signals How to further improve the results Summary Chapter 18: CNNs for Financial Time Series and Satellite Images How CNNs learn to model grid-like data From hand-coding to learning filters from data How the elements of a convolutional layer operate The evolution of CNN architectures: key innovations CNNs for satellite images and object detection LeNet5 – The first CNN with industrial applications AlexNet – reigniting deep learning research Transfer learning – faster training with less data Object detection and segmentation Object detection in practice CNNs for time-series data – predicting returns An autoregressive CNN with 1D convolutions CNN-TA – clustering time series in 2D format Summary Chapter 19: RNNs for Multivariate Time Series and Sentiment Analysis How recurrent neural nets work Unfolding a computational graph with cycles Backpropagation through time Alternative RNN architectures How to design deep RNNs The challenge of learning long-range dependencies Gated recurrent units RNNs for time series with TensorFlow 2 Univariate regression – predicting the S&P 500 How to get time series data into shape for an RNN Stacked LSTM – predicting price moves and returns Multivariate time-series regression for macro data RNNs for text data LSTM with embeddings for sentiment classification Sentiment analysis with pretrained word vectors Predicting returns from SEC filing embeddings Summary Chapter 20: Autoencoders for Conditional Risk Factors and Asset Pricing Autoencoders for nonlinear feature extraction Generalizing linear dimensionality reduction Convolutional autoencoders for image compression Managing overfitting with regularized autoencoders Fixing corrupted data with denoising autoencoders Seq2seq autoencoders for time series features Generative modeling with variational autoencoders Implementing autoencoders with TensorFlow 2 How to prepare the data One-layer feedforward autoencoder Feedforward autoencoder with sparsity constraints Deep feedforward autoencoder Convolutional autoencoders Denoising autoencoders A conditional autoencoder for trading Sourcing stock prices and metadata information Computing predictive asset characteristics Creating the conditional autoencoder architecture Lessons learned and next steps Summary Chapter 21: Generative Adversarial Nets for Synthetic Time-Series Data Creating synthetic data with GANs Comparing generative and discriminative models Adversarial training – a zero-sum game of trickery The rapid evolution of the GAN architecture zoo GAN applications to images and time-series data How to build a GAN using TensorFlow 2 Building the generator network Creating the discriminator network Setting up the adversarial training process Evaluating the results TimeGAN for synthetic financial data Learning to generate data across features and time Implementing TimeGAN using TensorFlow 2 Evaluating the quality of synthetic time-series data Lessons learned and next steps Summary Chapter 22: Deep Reinforcement Learning – Building a Trading Agent Elements of a reinforcement learning system The policy – translating states into actions Rewards – learning from actions The value function – optimal choice for the long run With or without a model – look before you leap? How to solve reinforcement learning problems Key challenges in solving RL problems Fundamental approaches to solving RL problems Solving dynamic programming problems Finite Markov decision problems Policy iteration Value iteration Generalized policy iteration Dynamic programming in Python Q-learning – finding an optimal policy on the go Exploration versus exploitation – -greedy policy The Q-learning algorithm How to train a Q-learning agent using Python Deep RL for trading with the OpenAI Gym Value function approximation with neural networks The Deep Q-learning algorithm and extensions Introducing the OpenAI Gym How to implement DDQN using TensorFlow 2 Creating a simple trading agent How to design a custom OpenAI trading environment Deep Q-learning on the stock market Lessons learned Summary Chapter 23: Conclusions and Next Steps Key takeaways and lessons learned Data is the single most important ingredient Domain expertise: telling the signal from the noise ML is a toolkit for solving problems with data Beware of backtest overfitting How to gain insights from black-box models ML for trading in practice Data management technologies ML tools Online trading platforms Conclusion Alpha Factor Library Common alpha factors implemented in TA-Lib A key building block – moving averages Overlap studies – price and volatility trends Momentum indicators Volume and liquidity indicators Volatility indicators Fundamental risk factors WorldQuant's quest for formulaic alphas Cross-sectional and time-series functions Formulaic alpha expressions Bivariate and multivariate factor evaluation Information coefficient and mutual information Feature importance and SHAP values Comparison – the top 25 features for each metric Financial performance – Alphalens References Index