دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Sudeep Tanwar (editor), Anand Nayyar (editor), Rudra Rameshwar (editor) سری: ISBN (شابک) : 9781000487794, 1000487814 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: [389] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Machine learning espousal in signal processing : applications, challenges and road ahead به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حمایت از یادگیری ماشین در پردازش سیگنال: برنامه های کاربردی، چالش ها و راه پیش رو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors 1. Introduction to Signal Processing and Machine Learning 1.1 Introduction 1.2 Basic Terminologies 1.2.1 Signal Processing 1.2.1.1 Continuous and Discrete Signals 1.2.1.2 Sampling and Quantization 1.2.1.3 Change of Basis 1.2.1.4 Importance of Time Domain and Frequency Domain Analyses 1.2.2 Machine Learning 1.3 Distance-Based Signal Classification, Nearest Neighbor Classifier, and Hilbert Space 1.3.1 Distance-Based Signal Classification 1.3.1.1 Metric Space 1.3.1.2 Normed Linear Space 1.3.1.3 Inner Product Space 1.3.2 Nearest Neighbor Classification 1.3.3 Hilbert Space 1.4 Fusion of Machine Learning in Signal Processing 1.5 Benefits of Adopting Machine Learning in Signal Processing 1.6 Conclusion References 2. Learning Theory (Supervised/Unsupervised) for Signal Processing 2.1 Introduction 2.1.1 Signal Processing 2.2 Machine Learning 2.2.1 Why Do We Need ML for Signal Processing? 2.2.2 Speaker ID – A Utilization of ML Calculations in Sign Handling 2.2.3 Discourse and Audio Processing 2.2.4 Discourse Recognition 2.2.5 Listening Devices 2.2.6 Independent Driving 2.2.7 Picture Processing and Analysis 2.2.8 Wearables 2.2.9 Information Science 2.2.10 Wireless Systems and Networks 2.3 Machine Learning Algorithms 2.4 Supervised Learning 2.5 Unsupervised Learning 2.6 Semi-Supervised Learning 2.7 Reinforcement Learning 2.8 Use Case of Signal Processing Using Supervised and Unsupervised Learning 2.8.1 Features and Classifiers 2.8.2 Linear Classifiers 2.8.3 Decision Hyperplanes 2.8.4 Least Squares Methods 2.8.5 Mean Square Estimation 2.8.6 Support Vector machines 2.8.7 Non-Linear Regression 2.8.8 Non-Linearity of Activation Functions 2.8.8.1 Sigmoid Function 2.8.8.2 Rectified Linear Unit (ReLU) 2.8.9 Classification 2.8.9.1 Linear Classification 2.8.9.2 Two-Class Classification 2.8.9.3 Geometrical Interpretation of Derivatives 2.8.9.4 Multiclass Classification: Loss Function 2.8.10 Mean Squared Error 2.8.11 Multilabel Classification 2.8.12 Gradient Descent 2.8.12.1 Learning Rate 2.8.13 Hyperparameter Tuning 2.8.13.1 Validation 2.8.14 Regularization 2.8.14.1 How Does Regularization Work? 2.8.15 Regularization Techniques 2.8.15.1 Ridge Regression (L2 Regularization) 2.8.16 Lasso Regression (L1 Regularization) 2.8.17 K-Means Clustering 2.8.18 The KNN Algorithm 2.8.19 Clustering 2.8.20 Clustering Methods 2.9 Deep Learning for Signal Data 2.9.1 Traditional Time Series Analysis 2.9.2 Recurrence Domain Analysis 2.9.3 Long Short-Term Memory Models for Human Activity Recognition 2.9.4 External Device HAR 2.9.5 Signal Processing on GPUs 2.9.6 Signal Processing on FPGAs 2.9.7 Signal Processing is coming to the Forefront of Data Analysis 2.10 Conclusion References 3. Supervised and Unsupervised Learning Theory for Signal Processing 3.1 Introduction 3.1.1 Supervised Learning 3.1.2 Unsupervised Learning 3.1.3 Reinforcement Learning 3.1.4 Semi-Supervised Learning 3.2 Supervised Learning Method 3.2.1 Classicfiation Problems 3.2.2 Regression Problems 3.2.3 Examples of Supervised Learning 3.3 Unsupervised Learning Method 3.3.1 Illustrations of Unsupervised Learning 3.4 Semi-Supervised Learning Method 3.5 Binary Classification 3.5.1 Different Classes 3.5.2 Classification in Preparation 3.5.2.1 Logistic Regression Model 3.5.2.2 Odds Ratio 3.5.2.3 Logit Function 3.5.2.4 The Sigmoid Function 3.5.2.5 Support Vector Machines 3.5.2.6 Maximum Margin Lines 3.6 Conclusion References 4. Applications of Signal Processing 4.1 Introduction 4.2 Audio Signal Processing 4.2.1 Machine Learning in Audio Signal Processing 4.2.1.1 Spectrum and Cepstrum 4.2.1.2 Mel Frequency Cepstral Coefficients 4.2.1.3 Gammatone Frequency Cepstral Coefficients 4.2.1.4 Building the Classifier 4.3 Audio Compression 4.3.1 Modeling and Coding 4.3.2 Lossless Compression 4.3.3 Lossy Compression 4.3.4 Compressed Audio with Machine Learning Applications 4.4 Digital Image Processing 4.4.1 Fields Overlapping with Image Processing 4.4.2 Digital Image Processing System 4.4.3 Machine Learning with Digital Image Processing 4.4.3.1 Image Classification 4.4.3.2 Data Labelling 4.4.3.3 Location Detection 4.5 Video Compression 4.5.1 Video Compression Model 4.5.2 Machine Learning in Video Compression 4.5.2.1 Development Savings 4.5.2.2 Improving Encoder Density 4.6 Digital Communications 4.6.1 Machine Learning in Digital Communications 4.6.1.1 Communication Networks 4.6.1.2 Wireless Communication 4.6.1.3 Smart Infrastructure and IoT 4.6.1.4 Security and Privacy 4.6.1.5 Multimedia Communication 4.6.2 Healthcare 4.6.2.1 Personalized Medical Treatment 4.6.2.2 Clinical Research and Trial 4.6.2.3 Diagnosis of Disease 4.6.2.4 Smart Health Records 4.6.2.5 Medical Imaging 4.6.2.6 Drug Discovery 4.6.2.7 Outbreak Prediction 4.6.3 Seismology 4.6.3.1 Interpreting Seismic Observations 4.6.3.2 Machine Learning in Seismology 4.6.4 Speech Recognition 4.6.5 Computer Vision 4.6.6 Economic Forecasting 4.7 Conclusion References 5. Dive in Deep Learning: Computer Vision, Natural Language Processing, and Signal Processing 5.1 Deep Learning: Introduction 5.2 Past, Present, and Future of Deep- Learning 5.3 Natural Language Processing 5.3.1 Word Embeddings 5.3.1.1 Word2vec 5.3.2 Global Vectors for Word Representation 5.3.3 Convolutional Neural Networks 5.3.4 Feature Selection and Preprocessing 5.3.4.1 Tokenization 5.3.4.2 Stop Word Removal 5.3.4.3 Stemming 5.3.4.4 Lemmatization 5.3.5 Named Entity Recognition 5.4 Image Processing 5.4.1 Introduction to Image Processing and Computer Vision 5.4.1.1 Scene Understanding 5.4.2 Localization 5.4.3 Smart Cities and Surveillance 5.4.4 Medical Imaging 5.4.5 Object Representation 5.4.6 Object Detection 5.5 Audio Processing and Deep Learning 5.5.1 Audio Data Handling Using Python 5.5.2 Spectrogram 5.5.3 Wavelet- Based Feature Extraction 5.5.4 Current Methods 5.5.4.1 Audio Classification 5.5.4.2 Audio Fingerprinting 5.5.4.3 Feature Extraction 5.5.4.4 Speech Classification 5.5.4.5 Music Processing 5.5.4.6 Natural Sound Processing 5.5.4.7 Technological Tools 5.6 Conclusion References 6. Brain–Computer Interfacing 6.1 Introduction to BCI and Its Components 6.1.1 BCI Components 6.2 Framework/Architecture of BCI 6.3 Functions of BCI 6.3.1 Correspondence and Control 6.3.2 Client State Checking 6.4 Applications of BCI 6.4.1 Healthcare 6.4.1.1 Prevention 6.4.1.2 Detection and Diagnosis 6.4.1.3 Rehabilitation and Restoration 6.4.2 Neuroergonomics and Smart Environment 6.4.3 Neuromarketing and Advertisement 6.4.4 Pedagogical and Self-Regulating Oneself 6.4.5 Games and Entertainment 6.4.6 Security and Authentication 6.5 Signal Acquisition 6.5.1 Invasive Techniques 6.5.1.1 Intracortical 6.5.1.2 ECoG and Cortical Surface 6.5.2 Noninvasive Techniques 6.5.2.1 Magneto-encephalography (MEG) 6.5.2.2 fMRI (functional Magnetic Resonance Imaging) 6.5.2.3 fNIRS (functional Near-Infrared Spectroscopy) 6.5.2.4 EEG (Electroencephalogram) 6.6 Electrical Signal of BCI 6.6.1 Evoked Potential (EP) or Evoked Response 6.6.2 Event-Related Desynchronization and Synchronization 6.7 Challenges of BCI and Proposed Solutions 6.7.1 Challenges of Usability 6.7.2 Technical Issues 6.7.3 Proposed Solutions 6.7.3.1 Noise Removal 6.7.3.2 Disconnectedness of Multiple Classes 6.8 Conclusion References 7. Adaptive Filters and Neural Net 7.1 Introduction 7.1.1 Adaptive Filtering Problem 7.2 Linear Adaptive Filter Implementation 7.2.1 Stochastic Gradient Approach 7.2.2 Least Square Estimation 7.3 Nonlinear Adaptive Filters 7.3.1 Volterra-Based Nonlinear Adaptive Filter 7.4 Applications of Adaptive Filter 7.4.1 Biomedical Applications 7.4.1.1 ECG Power-Line Interference Removal 7.4.1.2 Maternal-Fetal ECG Separation 7.4.2 Speech Processing 7.4.2.1 Noise Cancelation 7.4.3 Communication Systems 7.4.3.1 Channel Equalization in Data Transmission Systems 7.4.3.2 Multiple Access Interference Mitigation in CDMA 7.4.4 Adaptive Feedback Cancellation in Hearing Aids 7.5 Neural Network 7.5.1 Learning Techniques in ANN 7.6 Single and Multilayer Neural Net 7.6.1 Single-Layer Neural Networks 7.6.2 Multilayer Neural Net 7.7 Applications of Neural Networks 7.7.1 ECG Classicafition 7.7.1.1 Methodology 7.7.2 Speech Recognition 7.7.2.1 Methodology 7.7.3 Communication Systems 7.7.3.1 Mobile Station Location Identification Using ANN 7.7.3.2 ANN-Based Call Handoff Management Scheme for Mobile Cellular Network 7.7.3.3 A Hybrid Path Loss Prediction Model based on Artificial Neural Networks 7.7.3.4 Classification of Primary Radio Signals 7.7.3.5 Channel Capacity Estimation Using ANN 7.8 Conclusion References 8. Adaptive Decision Feedback Equalizer Based on Wavelet Neural Network 8.1 Introduction 8.2 System Model 8.2.1 Channel Equalization 8.2.2 Decision Feedback Equalization 8.3 Wavelet Neural Network 8.3.1 Wavelet Analysis 8.3.2 Wavelet Neural Network 8.4 Multidimensional Wavelet Neural Network 8.5 Proposed WNN DFE Architecture 8.5.1 Equalizer Architecture 8.5.2 Cuckoo Search Optimization 8.5.3 CSO-Based Training of WNN DFE 8.5.4 Simulation Results and Discussion 8.5.4.1 MSE Performance 8.5.4.2 Effect of EVR 8.5.4.3 Effect of Time-Varying Channel 8.5.4.4 BER Performance Evaluation 8.6 Conclusion References 9. Intelligent Video Surveillance Systems Using Deep Learning Methods 9.1 Introduction 9.1.1 Deep Learning 9.1.2 Deep Learning – Past, Present, and Future 9.1.3 Recent Methodologies 9.1.4 Concepts Used in Deep Learning 9.1.4.1 Convolutional Neural Networks (CNN) 9.2 Natural Language Processing Using Deep Learning 9.2.1 Introduction to Natural Language Processing (NLP) 9.2.2 Word-Vector Representations (Simple Word, Multiword Prototypes, and Global Contexts) 9.2.2.1 Word Vector Representation 9.2.2.2 Simple Word2VectorRepresentation 9.2.2.3 Learning Representation through Backpropagation 9.2.2.4 Natural Language Tasks for Text Classification 9.2.2.5 Natural Language Tasks for Image Description Generation 9.3 Machine Translation Using Gated Recurrent Neural Networks (GRNN) and Long Short-Term Memory (LSTM) 9.3.1 Gated Recurrent Units (GRUs) 9.3.2 Long Short-Term Memory (LSTM) 9.3.3 Results Analysis 9.4 Image Processing Using Deep Learning Algorithms 9.4.1 Introduction to Image Processing and Computer Vision 9.4.2 Data Preparation for Image Processing Tasks 9.4.3 Classification Algorithms with Applications 9.5 Lightweight Deep Convolution Neural Network Architecture (LW-DCNN) 9.5.1 Introduction 9.5.2 Architecture 9.5.3 Results 9.5.3.1 Comparison Analysis 9.6 Improved Unified Model for Moving Object Detection 9.6.1 Introduction 9.6.2 Object Detection Architecture 9.6.3 Results 9.6.4 Comparison Analysis 9.6.5 Applications to Human Action Recognition 9.7 Wavelet-Based Feature Extraction Methods and Application to Audio Signals 9.7.1 Introduction to Discrete Wavelet Transform Techniques 9.7.2 Wavelet-Based Feature Selection Methods 9.7.3 Hybrid Feature Extraction Method for Classification 9.7.4 Results 9.7.5 Various Applications of Audio Signals 9.8 Conclusion References 10. Stationary Signal, Autocorrelation, and Linear and Discriminant Analysis 10.1 Introduction 10.2 Fundamentals of Linear Algebra and Probability Theory 10.2.1 What is Linear Algebra? 10.2.1.1 Important Concepts in Linear Algebra for Machine Learning 10.2.1.2 Role of Linear Algebra in Machine Learning 10.2.2 Probability Theory 10.2.2.1 What Is Probability? 10.2.2.2 The Mathematics of Probability 10.2.2.3 Independence and Conditional Independence 10.3 Basic Concepts of Machine Learning 10.4 Supervised and Unsupervised ML Techniques for Digital Signal Processing 10.4.1 What Is Signal Processing? 10.4.2 Machine Learning (ML) Concepts 10.5 Applications of Signal Based Identification Using Machine Learning Approach 10.5.1 ML for Audio Classification 10.5.2 Audio Signals Classification 10.5.3 ML for Image Processing 10.6 Applications of ML Methods in Optical Communications 10.7 Conclusion References 11. Intelligent System for Fault Detection in Rotating Electromechanical Machines 11.1 Introduction 11.2 Related Works 11.3 Asynchronous Machines 11.4 Electromechanical Faults 11.4.1 Bearing Fault 11.4.2 Broken Rotor Bar Fault 11.4.3 Eccentricity Fault 11.4.4 Misalignment Fault 11.5 Methods for Detecting Anomalies 11.5.1 Definition 11.5.2 Importance of Anomaly Detection 11.5.3 Some Techniques for Anomaly Detection 11.6 Frequency Signatures 11.7 The MCSA Measurement Method 11.7.1 Modeling of the Stator Current of the Asynchronous Machine 11.8 Variants of the ESPRIT Method 11.9 MOS (Order Selection Model) 11.9.1 Principle 11.9.2 Mathematical Expressions 11.9.3 Results Obtained by Each of the MOS Algorithms 11.9.3.1 Conclusion 11.10 Intelligent Defect Classification Algorithms 11.10.1 Artificial Neuronal Networks and Genetic Algorithms (ANN-AG) 11.10.1.1 Artificial Neural Networks 11.10.1.2 Genetic Algorithms (GA) 11.10.2 Fusion ANN et AG 11.10.3 Association of Two Architectures 11.10.4 Support Vectors Machine (SVM) 11.10.4.1 How It Works 11.10.5 K-Nearest Neighbors (K-NN) 11.10.6 Extreme Learning Machines 11.10.6.1 Principle or Algorithm 11.11 Simulation and Analysis of Results 11.11.1 High-Resolution Estimation Methods 11.11.1.1 Preparation of Simulation Data 11.11.1.2 Frequency Error Analysis 11.11.1.3 Amplitude Error Analysis 11.11.1.4 Interpretations on Frequency Analysis 11.11.1.5 Interpretations on Amplitude Analysis 11.11.1.6 Interpretations on Frequency and Amplitude Analysis 11.11.1.7 Interpretation of Algorithm Execution Times 11.11.1.8 Conclusion 11.11.2 Fault Classification Algorithms 11.11.2.1 Artificial Neural Networks and Genetic Algorithms 11.11.2.2 Conclusion 11.11.3 Vector Machine Supports 11.11.3.1 Simulation in the Time Domain 11.11.3.2 Simulation in the Frequency Domain 11.11.4 K-Nearest Neighbors 11.11.4.1 Simulation in the Time Domain 11.11.4.2 Simulation in the Frequency Domain 11.11.5 Extreme Learning Machine 11.11.5.1 Simulation in the Time Domain 11.11.5.2 Simulation in the Frequency Domain 11.11.6 Comparative Table of the Different Algorithms Developed in Time and Frequency 11.11.6.1 Comparison of Intelligent Fault Classification Algorithms in the Time and Frequency Domain 11.12 Conclusion References 12. Wavelet Transformation and Machine Learning Techniques for Digital Signal Analysis in IoT Systems 12.1 Introduction 12.2 Digital Signal Processing Techniques for IoT Devices 12.2.1 Fourier Transform 12.2.2 Wavelet Transform 12.2.2.1 Continuous Wavelet Transform (CWT) 12.2.2.2 Discrete Wavelet Transformation (DWT) 12.2.2.3 Computation of Discrete Wavelet Transform 12.3 Machine Learning and Deep Learning Techniques for Time Series Analysis in IoT 12.3.1 Time Series Classification Algorithms 12.3.2 Time Series Classification Using Deep Learning 12.4 Comparison for Morlet, Mexican Hat, Frequency B-Spline Wavelet Toward the Classification of ECG Signal 12.4.1 Mexican Wavelet Transform 12.4.2 Morlet Wavelet Transform 12.4.3 Frequency B-Spline Wavelet Transform 12.5 Conclusion References Index