دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Pardeep Kumar (editor), Yugal Kumar (editor), Mohamed A. Tawhid (editor) سری: ISBN (شابک) : 0128217774, 9780128217771 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 434 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning, Big Data, and IoT for Medical Informatics (Intelligent Data-Centric Systems: Sensor Collected Intelligence) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین ، داده های بزرگ و اینترنت اشیا برای انفورماتیک پزشکی (سیستم های هوشمند داده محور: هوش جمع آوری شده سنسور) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آموزش ماشین، داده های بزرگ و اینترنت اشیا برای انفورماتیک پزشکی بر آخرین تکنیک های اتخاذ شده در زمینه انفورماتیک پزشکی تمرکز دارد.
در انفورماتیک پزشکی، یادگیری ماشین، داده های بزرگ و تکنیک های مبتنی بر IOT نقش مهمی در تشخیص بیماری و پیش بینی آن دارند. در زمینه پزشکی، ساختار دادهها به دلیل ناهمگونی دادههایی مانند دادههای ECG، دادههای اشعه ایکس و دادههای تصویر، برای تحلیلهای پیشبینی دقیق به همان اندازه مهم است. بنابراین، این کتاب بر قابلیت استفاده از یادگیری ماشین، دادههای بزرگ و تکنیکهای مبتنی بر IOT در مدیریت دادههای ساختاریافته و بدون ساختار تمرکز دارد. همچنین بر تکنیکهای حفظ حریم خصوصی دادههای پزشکی تأکید میکند.
این جلد میتواند بهعنوان کتاب مرجع برای دانشمندان، محققان، پزشکان و دانشگاهیان فعال در زمینه انفورماتیک پزشکی هوشمند استفاده شود. علاوه بر این، می تواند به عنوان یک کتاب مرجع برای دوره های کارشناسی و کارشناسی ارشد مانند انفورماتیک پزشکی، یادگیری ماشین، کلان داده و اینترنت اشیا نیز استفاده شود.
Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics.
In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data.
This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT.
Front matter Copyright Contributors Preface Outline of the book and chapter synopses Special acknowledgments Predictive analytics and machine learning for medical informatics: A survey of tasks and techniques Introduction: Predictive analytics for medical informatics Overview: Goals of machine learning Current state of practice Key task definitions Diagnosis Predictive analytics Therapy recommendation Automation of treatment Other tasks in integrative medicine Open research problems Learning for classification and regression Learning to act: Control and planning Toward greater autonomy: Active learning and self-supervision Background Diagnosis Diagnostic classification and regression tasks Diagnostic policy-learning tasks Active, transfer, and self-supervised learning Predictive analytics Prediction by classification and regression Learning to predict from reinforcements and by supervision Transfer learning in prediction Therapy recommendation Supervised therapy recommender systems Automation of treatment Classification and regression-based tasks RL for automation Active learning in automation Integrating medical informatics and health informatics Classification and regression tasks in HMI Reinforcement learning for HMI Self-supervised, transfer, and active learning in HMI Techniques for machine learning Supervised, unsupervised, and semisupervised learning Shallow Deep Reinforcement learning Traditional Deep RL Self-supervised, transfer, and active learning Traditional Deep Applications Test beds for diagnosis and prognosis New test beds Test beds for therapy recommendation and automation Prescriptions Surgery Experimental results Test bed Results and discussion Conclusion: Machine learning for computational medicine Frontiers: Preclinical, translational, and clinical Toward the future: Learning and medical automation References Geolocation-aware IoT and cloud-fog-based solutions for healthcare Introduction Related work Health monitoring system with cloud computing Health monitoring system with fog computing Health monitoring system with cloud-fog computing Proposed framework Health data analysis Geospatial analysis for medical facility Overlay analysis to obtain nearest medical facilities Shortest path to reach nearest medical centers Delay and power consumption calculation Performance evaluation Conclusion and future work References Machine learning vulnerability in medical imaging Introduction Computer vision Adversarial computer vision Methods to produce adversarial examples Adversarial attacks Adversarial defensive methods Adversarial computer vision in medical imaging Adversarial examples: How to generate? Conclusion Acknowledgment References Skull stripping and tumor detection using 3D U-Net Introduction Previous work Overview of U-net architecture 3D U-net Batch normalization Activation function Pooling Padding Optimizer Materials and methods Dataset Implementation Results Experimental result Dice coefficient Accuracy Intersection over Union (IoU) Quantitative result Qualitative result Conclusion References Cross color dominant deep autoencoder for quality enhancement of laparoscopic video: A hybrid deep learning an Introduction Range-domain filtering Cross color dominant deep autoencoder (C2D2A) leveraging color spareness and saliency Evolution of DCM through C2D2A Inclusion of DCM into principal flow of bilateral filtering Experimental results Conclusion Acknowledgments References Estimating the respiratory rate from ECG and PPG using machine learning techniques Introduction Motivation Background Related work Methods Data Steps RR signal extraction Machine learning Experimental results Discussion and conclusion Acknowledgments References Machine learning-enabled Internet of Things for medical informatics Introduction Healthcare Internet of Things H-IoT architecture Three-tier H-IoT architecture Applications and challenges of H-IoT Applications of H-IoT Fitness tracking Neurological disorders Cardio vascular disorders Ambient-assisted living Challenges of H-IoT system QoS improvement Scalability challenges Machine learning Machine learning advancements at the application level of H-IoT Machine learning advancements at network level of H-IoT Future research directions Novel applications of ML in H-IoT Real-time monitoring and treatment Training for professionals Advanced prosthetics Research opportunities in network management Channel access Dynamic data management Fully autonomous operation Security Conclusion References Edge detection-based segmentation for detecting skin lesions Introduction Previous works Materials and methods Elitist-Jaya algorithm Otsus method Proposed method Image preprocessing Edge detection Experiment and results Dataset Evaluation metrics Results and discussion Statistical analysis Conclusion References A review of deep learning approaches in glove-based gesture classification Introduction Data gloves Early and commercial data gloves Sensing mechanism in data gloves Fiber-optic sensors Conductive strain sensors Inertial sensors Gesture taxonomies Gesture classification Classical machine learning algorithms K-nearest neighbor Support vector machine (SVM) Decision tree Artificial neural network (ANN) Probabilistic neural network (PNN) Glove-based gesture classification with classical machine learning algorithms Deep learning Convolutional neural network (CNN) Recurrent neural network (RNN) Glove-based gesture classification using deep learning Discussion and future trends Conclusion References An ensemble approach for evaluating the cognitive performance of human population at high altitude Introduction Methodology Data collection Data processing and feature selection Differential expression analyses Association rule mining Experimental set-up Results and discussion Differential analyses-Cognitive and clinical features Discovered associative rules Discussion Future opportunities Conclusions Acknowledgment References Machine learning in expert systems for disease diagnostics in human healthcare Introduction Types of expert systems Components of an expert system Techniques used in expert systems of medical diagnosis Existing expert systems Case studies Cancer diagnosis using rule-based expert system Alzheimers diagnosis using fuzzy-based expert systems Algorithm of fuzzy inference system Significance and novelty of expert systems Limitations of expert systems Conclusion Acknowledgment References An entropy-based hybrid feature selection approach for medical datasets Introduction Deficiencies of the existing models Chapter organization Background of the present research Feature selection (FS) Methodology The entropy based feature selection approach Equi-class distribution of instances Splitting the dataset D into subsets: D1, D2, and D3 Experiment and experimental results Experiment using suggested feature selection approach Discussion Performance analysis of the suggested feature selection approach Conclusions and future works Conflict of interest Appendix A Explanation on entropy-based feature extraction approach References Machine learning for optimizing healthcare resources Introduction The state of the art Resource management Impact on peoples health Exit strategies Machine learning for health data analysis Feature selection techniques Filter approach Correlation based Information based Consistency based Distance based Wrapper approach Classic search algorithms Greedy search Best first search Metaheuristic algorithms Genetic algorithms Particle swarm optimization Ant colony optimization Artificial bee colony Grey wolf optimization Artificial immune system algorithms Gravitational search optimization Embedded approach Machine learning classifiers One-class vs. multiclass classification Supervised vs. unsupervised learning Case studies Experimental setup Case study 1: Diabetes data analysis Case study 2: COVID-19 data analysis Summary and future directions References Interpretable semisupervised classifier for predicting cancer stages Introduction Self-labeling gray box Data preparation Experiments and discussion Influence of clinical and proteomic data on the prediction of cancer stage Influence of unlabeled data on the prediction of cancer stage Influence of unlabeled data on the prediction of cancer stage for rare cancer types Conclusions Acknowledgments References Applications of blockchain technology in smart healthcare: An overview Introduction Comparison to other surveys Blockchain overview Key requirements Proposed healthcare monitoring framework Blockchain-enabled healthcare applications Potential challenges Concluding remarks Declaration of competing interest References Prediction of leukemia by classification and clustering techniques Introduction Motivation Literature review Description of proposed system Introduction and related concepts Framework for the proposed system Support vector machine K-nearest neighbor K-means clustering Fuzzy c-means clustering Simulation results and discussion Conclusion and future directions References Performance evaluation of fractal features toward seizure detection from electroencephalogram signals Introduction Fractal dimension Katz fractal dimension Higuchi fractal dimension Petrosian fractal dimension Dataset Experiments Results and discussion Conclusion Acknowledgments References Integer period discrete Fourier transform-based algorithm for the identification of tandem repeats in the DNA ... Introduction Related work Algorithm for detection of TRs DNA sequences Numerical mapping Short time integer period discrete Fourier transform Thresholding Verification of the detected candidate TRs Performance analysis of the proposed algorithm Conclusion References A blockchain solution for the privacy of patients medical data Introduction Stakeholders of healthcare industry Patients Pharmaceutical companies Healthcare providers (doctors, nurses, hospitals, nursing homes, clinics, etc.) Government Insurance companies Data protection laws for healthcare industry Medical data management Issues and challenges of healthcare industry Blockchain technology Features of blockchain Types of blockchain Working of blockchain Blockchain applications in healthcare Blockchain-based framework for privacy protection of patients data Conclusion References A novel approach for securing e-health application in a cloud environment Introduction Contribution Motivation Related works Challenges Proposed system Conclusion References An ensemble classifier approach for thyroid disease diagnosis using the AdaBoostM algorithm Introduction Data analytics Machine learning Approaching ensemble learning Understanding bagging Exploring boosting Discovering stacking Machine learning applications for healthcare analytics Machine learning-based model for disease diagnosis Machine learning-based algorithms to identify breast cancer Convolutional neural networks to detect cancer cells in brain images Machine learning techniques to detect prostate cancer in Magnetic resonance imaging Classification of respiratory diseases using machine learning Parkinsons disease diagnosis with machine learning-based models Processing drug discovery with machine learning Analyzing clinical data using machine learning algorithms Predicting thyroid disease using ensemble learning Machine learning-based applications for thyroid disease classification Preprocessing the dataset AdaBoostM algorithm Conclusion References A review of deep learning models for medical diagnosis Motivation Introduction MRI Segmentation Deep learning architectures used in diagnostic brain tumor analysis Convolutional neural networks or convnets Stacked autoencoders Deep belief networks 2D U-Net 3D U-Net Cascaded anisotropic network Deep learning tools applied to MRI images Proposed framework Conclusion and outlook Future directions References Machine learning in precision medicine Precision medicine Machine learning Machine learning in precision medicine Detection and diagnosis of a disease Prognosis of a disease Discovery of biomarkers and drug candidates Future opportunities Conclusions References Index