دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Haoxing Ren. Jiang Hu
سری:
ISBN (شابک) : 3031130731, 9783031130731
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 584
[585]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Machine Learning Applications in Electronic Design Automation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای یادگیری ماشین در اتوماسیون طراحی الکترونیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به عنوان یک مرجع تک منبعی به برنامه ها و روش های کلیدی یادگیری ماشین (ML) در طراحی و تأیید دیجیتال و آنالوگ عمل می کند. کارشناسان دانشگاه و صنعت طیف گسترده ای از آخرین تحقیقات در مورد کاربردهای ML در اتوماسیون طراحی الکترونیکی (EDA) را پوشش می دهند، از جمله تجزیه و تحلیل و بهینه سازی طراحی دیجیتال، تجزیه و تحلیل و بهینه سازی طراحی آنالوگ، و همچنین تأیید عملکرد، FPGA و طراحی های سطح سیستم. ، طراحی برای تولید (DFM) و طراحی اکتشاف فضایی. نویسندگان همچنین روشهای کلیدی ML مانند ML کلاسیک، مدلهای یادگیری عمیق مانند شبکههای عصبی کانولوشن (CNN)، شبکههای عصبی نموداری (GNN)، شبکههای متخاصم مولد (GANs) و روشهای بهینهسازی مانند یادگیری تقویتی (RL) و بهینهسازی بیزی را پوشش میدهند. (BO). همه این موضوعات برای طراحان تراشه و توسعه دهندگان EDA و محققانی که در طراحی و تأیید دیجیتال و آنالوگ کار می کنند ارزشمند است.
This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.
Preface Contents About the Editors Part I Machine Learning-Based Design Prediction Techniques 1 ML for Design QoR Prediction 1.1 Introduction 1.2 Challenges of Design QoR Prediction 1.2.1 Limited Number of Samples 1.2.2 Chaotic Behaviors of EDA Tools 1.2.3 Actionable Predictions 1.2.4 Infrastructure Needs 1.2.5 The Bar for Design QoR Prediction 1.3 ML Techniques in QoR Prediction 1.3.1 Graph Neural Networks 1.3.2 Long Short-Term Memory (LSTM) Networks 1.3.3 Reinforcement Learning 1.3.4 Other Models 1.4 Timing Estimation 1.4.1 Problem Formulation 1.4.2 Estimation Flow 1.4.3 Feature Engineering 1.4.4 Machine Learning Engines 1.5 Design Space Exploration 1.5.1 Problem Formulation 1.5.2 Estimation Flow 1.5.3 Feature Engineering 1.5.4 Machine Learning Engines 1.6 Summary References 2 Deep Learning for Routability 2.1 Introduction 2.2 Background on DL for Routability 2.2.1 Routability Prediction Background 2.2.1.1 Design Rule Checking (DRC) Violations 2.2.1.2 Routing Congestion and Pin Accessibility 2.2.1.3 Relevant Physical Design Steps 2.2.1.4 Routability Prediction 2.2.2 DL Techniques in Routability Prediction 2.2.2.1 CNN Methods 2.2.2.2 FCN Methods 2.2.2.3 GAN Methods 2.2.2.4 NAS Methods 2.2.3 Why DL for Routability 2.3 DL for Routability Prediction Methodologies 2.3.1 Data Preparation and Augmentation 2.3.2 Feature Engineering 2.3.2.1 Blockage 2.3.2.2 Wire Density 2.3.2.3 Routing Congestion 2.3.2.4 Pin Accessibility 2.3.2.5 Routability Label 2.3.3 DL Model Architecture Design 2.3.3.1 Common Operators and Connections 2.3.3.2 Case Study: RouteNet 2:xie2018routenet 2.3.3.3 Case Study: PROS 2:chen2020pros 2.3.3.4 Case Study: J-Net 2:liang2020drc 2.3.3.5 Case Study: Painting 2:yu2019painting 2.3.3.6 Case Study: Automated Model Development 2:chang2021auto 2.3.4 DL Model Training and Inference 2.4 DL for Routability Deployment 2.4.1 Direct Feedback to Engineers 2.4.2 Macro Location Optimization 2.4.3 White Space-Driven Model-Guided Detailed Placement 2.4.4 Pin Accessibility-Driven Model-Guided Detailed Placement 2.4.5 Integration in Routing Flow 2.4.6 Explicit Routability Optimization During Global Placement 2.4.7 Visualization of Routing Utilization 2.4.8 Optimization with Reinforcement Learning (RL) 2.5 Summary References 3 Net-Based Machine Learning-Aided Approaches for Timing and Crosstalk Prediction 3.1 Introduction 3.2 Backgrounds on Machine Learning-Aided Timing and Crosstalk Estimation 3.2.1 Timing Prediction Background 3.2.2 Crosstalk Prediction Background 3.2.3 Relevant Design Steps 3.2.4 ML Techniques in Net-Based Prediction 3.2.5 Why ML for Timing and Crosstalk Prediction 3.3 Preplacement Net Length and Timing Prediction 3.3.1 Problem Formulation 3.3.2 Prediction Flow 3.3.3 Feature Engineering 3.3.3.1 Features for Net Length Prediction 3.3.3.2 Features for Timing Prediction 3.3.4 Machine Learning Engines 3.3.4.1 Machine Learning Engine for Net Length Prediction 3.3.4.2 Machine Learning Engine for Preplacement Timing Prediction 3.4 Pre-Routing Timing Prediction 3.4.1 Problem Formulation 3.4.2 Prediction Flow 3.4.3 Feature Engineering 3.4.4 Machine Learning Engines 3.5 Pre-Routing Crosstalk Prediction 3.5.1 Problem Formulation 3.5.2 Prediction Flow 3.5.3 Feature Engineering 3.5.3.1 Probabilistic Congestion Estimation 3.5.3.2 Net Physical Information 3.5.3.3 Product of the Wirelength and Congestion 3.5.3.4 Electrical and Logic Features 3.5.3.5 Timing Information 3.5.3.6 Neighboring Net Information 3.5.4 Machine Learning Engines 3.6 Interconnect Coupling Delay and Transition Effect Prediction at Sign-Off 3.6.1 Problem Formulation 3.6.2 Prediction Flow 3.6.3 Feature Engineering 3.6.4 Machine Learning Engines 3.7 Summary References 4 Deep Learning for Power and Switching Activity Estimation 4.1 Introduction 4.2 Background on Modeling Methods for Switching Activity Estimators 4.2.1 Statistical Approaches to Switching Activity Estimators 4.2.2 ``Cost-of-Action''-Based Power Estimation Models 4.2.3 Learning/Regression-Based Power Estimation Models 4.3 Deep Learning Models for Power Estimation 4.4 A Case Study on Using Deep Learning Models for Per Design Power Estimation 4.4.1 PRIMAL Methodology 4.4.2 List of PRIMAL ML Models for Experimentation 4.4.2.1 Feature Construction Techniques in PRIMAL 4.4.2.2 Feature Encoding for Cycle-by-Cycle Power Estimation 4.4.2.3 Mapping Registers and Signals to Pixels 4.5 PRIMAL Experiments 4.5.1 Power Estimation Results of PRIMAL 4.5.2 Results Analysis 4.6 A Case Study on Using Graph Neural Networks for Generalizable Power Estimation 4.6.1 GRANNITE Introduction 4.6.2 The Role of GPUs in Gate-Level Simulation and Power Estimation 4.6.3 GRANNITE Implementation 4.6.3.1 Toggle Rate Features 4.6.3.2 Graph Object Creation 4.6.3.3 GRANNITE Architecture 4.7 GRANNITE Results 4.7.1 Analysis 4.8 Conclusion References 5 Deep Learning for Analyzing Power Delivery Networks and Thermal Networks 5.1 Introduction 5.2 Deep Learning for PDN Analysis 5.2.1 CNNs for IR Drop Estimation 5.2.1.1 PowerNet Input Feature Representation 5.2.1.2 PowerNet Architecture 5.2.1.3 Evaluation of PowerNet 5.2.2 Encoder-Decoder Networks for PDN Analysis 5.2.2.1 PDN Analysis as an Image-to-Image Translation Task 5.2.2.2 U-Nets for PDN Analysis 5.2.2.3 3D U-Nets for IR Drop Sequence-to-Sequence Translation 5.2.2.4 Regression-Like Layer for Instance-Level IR Drop Prediction 5.2.2.5 Encoder-Secoder Network Training 5.2.2.6 Evaluation of EDGe Networks for PDN Analysis 5.3 Deep Learning for Thermal Analysis 5.3.1 Problem Formulation 5.3.2 Model Architecture for Thermal Analysis 5.3.3 Model Training and Data Generation 5.3.4 Evaluation of ThermEDGe 5.4 Deep Learning for PDN Synthesis 5.4.1 Template-Driven PDN Optimization 5.4.2 PDN Synthesis as an Image Classification Task 5.4.3 Principle of Locality for Region Size Selection 5.4.4 ML-Based PDN Synthesis and Refinement Through the Design Flow 5.4.5 Neural Network Architectures for PDN Synthesis 5.4.6 Transfer Learning-Based CNN Training 5.4.6.1 Synthetic Input Feature Set Generation 5.4.6.2 Transfer Learning Model 5.4.6.3 Training Data Generation 5.4.7 Evaluation of OpeNPDN for PDN Synthesis 5.4.7.1 Justification for Transfer Learning 5.4.7.2 Validation on Real Design Testcases 5.5 DL for PDN Benchmark Generation 5.5.1 Introduction 5.5.2 GANs for PDN Benchmark Generation 5.5.2.1 Synthetic Image Generation for GAN Pretraining 5.5.2.2 GAN Architecture and Training 5.5.2.3 GAN Inference for Current Map Generation 5.5.3 Evaluation of GAN-Generated PDN Benchmarks 5.6 Conclusion References 6 Machine Learning for Testability Prediction 6.1 Introduction 6.2 Classical Testability Measurements 6.2.1 Approximate Measurements 6.2.1.1 SCOAP 6.2.1.2 Random Testability 6.2.2 Simulation-Based Measurements 6.3 Learning-Based Testability Prediction 6.3.1 Node-Level Testability Prediction 6.3.1.1 Conventional Machine Learning Methods 6.3.1.2 Graph-Based Deep Learning Methods 6.3.2 Circuit-Level Testability Prediction 6.3.2.1 Fault Coverage Prediction 6.3.2.2 Test Cost Prediction 6.3.2.3 X-Sensitivity Prediction 6.4 Additional Considerations 6.4.1 Imbalanced Dataset 6.4.2 Scalability of Graph Neural Networks 6.4.3 Integration with Design Flow 6.4.4 Robustness of Machine Learning Model and Metrics 6.5 Summary References Part II Machine Learning-Based Design Optimization Techniques 7 Machine Learning for Logic Synthesis 7.1 Introduction 7.2 Supervised and Reinforcement Learning 7.2.1 Supervised Learning 7.2.2 Reinforcement Learning 7.3 Supervised Learning for Guiding Logic Synthesis Algorithms 7.3.1 Guiding Logic Network Type for Logic Network Optimization 7.3.2 Guiding Logic Synthesis Flow Optimization 7.3.3 Guiding Cut Choices for Technology Mapping 7.3.4 Guiding Delay Constraints for Technology Mapping 7.4 Reinforcement Learning Formulations for Logic Synthesis Algorithms 7.4.1 Logic Network Optimization 7.4.2 Logic Synthesis Flow Optimization 7.4.2.1 Synthesis Flow Optimization for Circuit Area and Delay 7.4.2.2 Synthesis Flow Optimization for Logic Network Node and Level Counts 7.4.3 Datapath Logic Optimization 7.5 Scalability Considerations for Reinforcement Learning References 8 RL for Placement and Partitioning 8.1 Introduction 8.2 Background 8.3 RL for Combinatorial Optimization 8.3.1 How to Perform Decision-Making with RL 8.4 RL for Placement Optimization 8.4.1 The Action Space for Chip Placement 8.4.2 Engineering the Reward Function 8.4.2.1 Wirelength 8.4.2.2 Routing Congestion 8.4.2.3 Density and Macro Overlap 8.4.2.4 State Representation 8.4.3 Generating Adjacency Matrix for a Chip Netlist 8.4.4 Learning RL Policies that Generalize 8.5 Future Directions 8.5.1 Top-Level Floorplanning 8.5.2 Netlist Design Space Exploration 8.5.3 Broader Discussions: ML for Co-optimization Across the Overall Chip Design Process References 9 Deep Learning Framework for Placement 9.1 Introduction 9.2 DL Analogy for the Kernel Placement Problem 9.3 Speedup Kernel Operators 9.3.1 Wirelength 9.3.2 Density Accumulation 9.3.3 Discrete Cosine Transformation 9.4 Handle Region Constraints 9.5 Optimize Routability 9.5.1 Instance Inflation 9.5.2 Deep Learning-Based Optimization 9.6 Conclusion References 10 Circuit Optimization for 2D and 3D ICs with Machine Learning 10.1 Introduction 10.2 Graph Neural Network-Based Methods 10.2.1 2D Placement Optimization 10.2.1.1 Solution 10.2.1.2 Results 10.2.2 3D IC Tier Partitioning 10.2.2.1 Problem Statement 10.2.2.2 Solution 10.2.2.3 Results 10.2.3 Threshold Voltage Assignment 10.2.3.1 Problem Statement 10.2.3.2 Solution 10.2.3.3 Results 10.3 Reinforcement Learning-Based Methods 10.3.1 Decoupling Capacitor Optimization 10.3.1.1 Problem Statement 10.3.1.2 RL Setting 10.3.1.3 Deep Q-Learning 10.3.1.4 Results 10.3.2 Gate Sizing 10.3.2.1 Problem Statement 10.3.2.2 Solution 10.3.2.3 Results 10.3.3 Timing Closure Using Multiarmed Bandits 10.3.3.1 Problem Statement 10.3.3.2 Solution 10.3.3.3 Innovative Ideas 10.3.3.4 Results 10.4 Other Methods 10.4.1 3D IC Optimization Using Bayesian Optimization 10.4.1.1 Problem Statement 10.4.1.2 Solution 10.4.1.3 Results 10.5 Conclusions References 11 Reinforcement Learning for Routing 11.1 Introduction 11.2 RL for Global Routing 11.2.1 DQN Global Routing 11.2.1.1 Problem Formulation 11.2.1.2 Method and Results 11.2.2 Constructing Steiner Tree via Reinforcement Learning 11.2.2.1 Problem Formulation 11.2.2.2 Methods and Results 11.3 RL for Detailed Routing 11.3.1 Attention Routing 11.3.1.1 Problem Formulation 11.3.1.2 Method and Results 11.3.2 Asynchronous RL for Detailed Routing 11.3.2.1 Problem Formulation 11.3.2.2 Methods and Results 11.4 RL for Standard Cell Routing 11.4.1 Background 11.4.2 Problem Formulation 11.4.3 Methods and Results 11.5 RL for Related Routing Problems 11.5.1 RL for Communication Network Routing 11.5.2 RL for Path Planning 11.6 Challenges and Opportunities References 12 Machine Learning for Analog Circuit Sizing 12.1 Introduction 12.2 Conventional Methods 12.2.1 Equation-Based Methods 12.2.2 Simulation-Based Methods 12.2.3 Limitations on Conventional Methods 12.3 Bayesian Optimization 12.3.1 WEIBO: An Efficient Bayesian Optimization Approach for Automated Optimization of Analog Circuits 12.3.2 EasyBO: An Efficient Asynchronous Batch Bayesian Optimization Approach for Analog Circuit Synthesis 12.4 Improved Surrogate Model for Evolutionary Algorithm with Neural Networks 12.4.1 An Efficient Analog Circuit Sizing Method Based on Machine Learning-Assisted Global Optimization 12.5 Reinforcement Learning 12.5.1 GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning 12.5.2 AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs 12.5.3 DNN-Opt: An RL-Inspired Optimization for Analog Circuit Sizing Using Deep Neural Networks 12.5.4 Discussion: RL for Analog Sizing 12.6 Parasitic and Layout-Aware Sizing 12.6.1 BagNet: Layout-Aware Circuit Optimization 12.6.2 Parasitic-Aware Sizing with Graph Neural Networks 12.7 Conclusion and Future Directions References Part III Machine Learning Applications in Various Design Domains 13 The Interplay of Online and Offline Machine Learning for Design Flow Tuning 13.1 Introduction 13.2 Background 13.2.1 Online Design Flow Tuning Implications 13.2.2 Offline Design Flow Tuning Implications 13.2.3 LSPD Application-Specific Considerations 13.2.4 Design Flow Tuner Development: CAD Tool Vendor, Open-Source, or In-House 13.2.5 Case Study Background: STS Terminology and Design Space 13.3 Online Design Flow Tuning Approaches 13.3.1 Approaches for HLS Flows 13.3.2 Approaches for FPGA Flows 13.3.3 Approaches for LSPD Flows 13.3.3.1 Bayesian Optimization 13.3.3.2 Reinforcement Learning 13.3.4 Case Study: STS Online System 13.4 Offline Design Flow Tuning Approaches 13.4.1 Approaches for HLS Flows 13.4.2 Approaches for FPGA Flows 13.4.3 Approaches for LSPD Flows 13.4.3.1 Parameter Importance 13.4.3.2 Transfer Learning 13.4.3.3 Reinforcement Learning 13.4.3.4 Recommender Systems 13.4.4 Case Study: STS Offline System 13.5 The Interplay of Online and Offline Machine Learning 13.5.1 Approaches for FPGA Flows 13.5.2 Approaches for LSPD Flows 13.5.3 Case Study: Hybrid STS System 13.6 STS Experimental Results 13.6.1 STS Product Impact 13.6.2 STS Hybrid Online/Offline System Results 13.7 Future Directions 13.7.1 Adaptable Online and Offline Systems 13.7.2 Enhanced Online Tuning Compute Frameworks 13.7.3 HLS and LSPD Tuning System Collaboration 13.7.4 Human Designer and Tuning System Collaboration 13.7.5 Multi-Macro and Hierarchical Tuning Challenges 13.7.6 Generalized Code Tuning 13.8 Conclusion References 14 Machine Learning in the Service of Hardware Functional Verification 14.1 Introduction 14.2 The Verification Cockpit 14.2.1 Motivation and Goals 14.2.2 Verification Cockpit Architecture 14.2.3 Descriptive Analytics 14.3 Coverage Closure 14.3.1 Descriptive Coverage Analysis 14.3.1.1 Automatic Discovery of Coverage Models Structure 14.3.2 Coverage Directed Generation (CDG) 14.3.3 Model-Based CDG 14.3.4 Direct Data-Driven CDG 14.3.4.1 Test-Case Harvesting 14.3.4.2 Template-Aware Coverage 14.3.4.3 Learning the Mapping 14.3.5 Search-Based CDG 14.3.5.1 Fast Evaluation of the Test to Coverage Mapping 14.3.5.2 DFO-Based CDG 14.3.6 CDG for Large Sets of Unrelated Events 14.4 Risk Analysis 14.4.1 Trend Analysis of Bug Discovery Rate 14.4.2 Source Code Repository Analysis 14.5 Summary References 15 Machine Learning for Mask Synthesis and Verification 15.1 Introduction 15.2 Lithography Modeling 15.2.1 Physics in Lithography Modeling 15.2.1.1 Optical Modeling 15.2.1.2 Resist Modeling 15.2.2 Machine Learning Solutions for Lithogrpahy Modeling 15.2.3 Case Studies 15.2.3.1 Deep Lithography Simulator 15:OPC-TCAD2021-Chen 15.2.3.2 Resist Modeling with Transfer Learning and Active Data Selection 15:DFM-TCAD2019-Lin 15.3 Layout Hotspot Detection 15.3.1 Machine Learning for Layout Hotspot Detection 15.3.2 Case Studies 15.3.2.1 Detecting Lithography Hotspots with Feature Tensor Generation and Batch-Biased Learning 15:HSD-TCAD2019-Yang 15.3.2.2 Faster Region-Based Hotspot Detection 15:HSD-DAC2019-Chen 15.4 Mask Optimization 15.4.1 Machine Learning for Mask Optimization 15.4.2 Case Studies 15.4.2.1 SRAF Insertion with Supervised Dictionary Learning 15:OPC-ASPDAC2019-Geng 15.4.2.2 GAN-OPC 15:OPC-TCAD2019-Yang 15.5 Pattern Generation 15.5.1 Machine Learning for Layout Pattern Generation 15.5.2 Case Study 15.5.2.1 DeePattern 15:PG-DAC2019-Yang 15.6 Conclusion References 16 Machine Learning for Agile FPGA Design 16.1 Introduction 16.2 Preliminaries and Background 16.2.1 FPGA Design Flow 16.2.2 Motivation of ML for FPGA Design 16.3 Machine Learning Solutions for FPGA 16.3.1 ML for Fast and Accurate QoR Estimation 16.3.2 ML-Aided Decision-Making 16.3.3 Challenges and Strategies of Data Preparation for Learning 16.4 ML for FPGA Case Studies 16.4.1 QoR Estimation 16.4.1.1 Resource Usage Estimation in HLS Stage 16.4.1.2 Operation Delay Estimation in HLS Stage 16.4.1.3 Routing Congestion Estimation in Placement Stage 16.4.2 Design Space Exploration 16.4.2.1 Auto-Configuring CAD Tool Parameters 16.4.2.2 Automatic Synthesis Flow Generation 16.5 Future Research Scopes 16.6 Conclusion References 17 Machine Learning for Analog Layout 17.1 Introduction 17.2 Geometric Constraint Generation 17.2.1 Problem Statement 17.2.2 Subcircuit Annotation Using Graph Convolution Networks 17.2.3 Array-Based Methods for Subcircuit Annotation 17.2.4 System Symmetry Constraint with Graph Similarity 17.2.5 Symmetry Constraint with Graph Neural Networks 17.3 Constrained Placement and Routing 17.3.1 Placement Quality Prediction 17.3.1.1 Applying Standard ML Models 17.3.1.2 Stratified Sampling with SVM/MLP Models 17.3.1.3 Performance Prediction with Convolutional Neural Networks 17.3.1.4 PEA: Pooling with Edge Attention Using a GAT 17.3.2 Analog Placement 17.3.2.1 Incorporating Extracted Constraints into Analog Placers 17.3.2.2 Well Generation and Well-Aware Placement 17.3.3 Analog Routing 17.3.3.1 Incorporating Extracted Constraints into Analog Router 17.3.3.2 GeniusRoute: ML-Guided Analog Routing 17.4 Conclusion and Future Directions References 18 ML for System-Level Modeling 18.1 Introduction 18.2 Cross-Layer Prediction 18.2.1 Micro-Architecture Level Prediction 18.2.2 Source-Level Prediction 18.3 Cross-Platform Prediction 18.3.1 CPU to CPU 18.3.2 GPU to GPU 18.3.3 CPU to GPU 18.3.4 CPU to FPGA 18.3.5 FPGA to FPGA 18.4 Cross-Temporal Prediction 18.4.1 Short-Term Workload Forecasting 18.4.2 Long-Term Workload Forecasting 18.5 Summary and Conclusions References Index