دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Michelangelo Ceci, Jaakko Hollmén, Ljupčo Todorovski, Celine Vens, Sašo Džeroski (eds.) سری: Lecture Notes in Artificial Intelligence 10535 ISBN (شابک) : 9783319712451, 9783319712468 ناشر: Springer International Publishing سال نشر: 2017 تعداد صفحات: 881 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 62 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری ماشین و کشف دانش در پایگاههای داده: کنفرانس اروپایی، ECML PKDD 2017، اسکوپیه، مقدونیه، 18 تا 22 سپتامبر 2017، مجموعه مقالات، بخش دوم: داده کاوی و کشف دانش
در صورت تبدیل فایل کتاب Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین و کشف دانش در پایگاههای داده: کنفرانس اروپایی، ECML PKDD 2017، اسکوپیه، مقدونیه، 18 تا 22 سپتامبر 2017، مجموعه مقالات، بخش دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مجموعه مقالات سه جلدی LNAI 10534 – 10536، مجموعه مقالات داوری کنفرانس اروپایی در زمینه یادگیری ماشین و کشف دانش در پایگاههای داده، ECML PKDD 2017، برگزار شده در اسکوپیه، مقدونیه، در سپتامبر 2017 است. مجموع 101 مقاله منظم ارائه شده در بخش اول و بخش دوم به دقت مورد بررسی قرار گرفت و از بین 364 مورد ارسالی انتخاب شد. 47 مقاله در علم داده کاربردی، شهد و آهنگ آزمایشی وجود دارد. مشارکت ها در بخش های موضوعی به نام های زیر سازماندهی شدند: بخش اول: تشخیص ناهنجاری. بینایی کامپیوتری؛ گروه ها و فرا یادگیری؛ انتخاب و استخراج ویژگی؛ روش های هسته؛ یادگیری و بهینه سازی، فاکتورسازی ماتریس و تانسور؛ شبکه ها و نمودارها؛ شبکه های عصبی و یادگیری عمیق بخش دوم: استخراج الگو و توالی. حریم خصوصی و امنیت؛ مدل ها و روش های احتمالی؛ توصیه؛ پسرفت؛ یادگیری تقویتی؛ کشف زیر گروه؛ سری های زمانی و جریان ها؛ انتقال و یادگیری چند وظیفه ای؛ یادگیری بدون نظارت و نیمه نظارت بخش سوم: مسیر علم داده کاربردی. مسیر شهد؛ و آهنگ دمو.
The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.
Front Matter ....Pages I-XXXIII
Front Matter ....Pages 1-1
BeatLex: Summarizing and Forecasting Time Series with Patterns (Bryan Hooi, Shenghua Liu, Asim Smailagic, Christos Faloutsos)....Pages 3-19
Behavioral Constraint Template-Based Sequence Classification (Johannes De Smedt, Galina Deeva, Jochen De Weerdt)....Pages 20-36
Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space (Severin Gsponer, Barry Smyth, Georgiana Ifrim)....Pages 37-52
Subjectively Interesting Connecting Trees (Florian Adriaens, Jefrey Lijffijt, Tijl De Bie)....Pages 53-69
Front Matter ....Pages 71-71
Malware Detection by Analysing Encrypted Network Traffic with Neural Networks (Paul Prasse, Lukáš Machlica, Tomáš Pevný, Jiří Havelka, Tobias Scheffer)....Pages 73-88
PEM: A Practical Differentially Private System for Large-Scale Cross-Institutional Data Mining (Yi Li, Yitao Duan, Wei Xu)....Pages 89-105
Front Matter ....Pages 107-107
Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources (Edwin Simpson, Steven Reece, Stephen J. Roberts)....Pages 109-125
Bayesian Inference for Least Squares Temporal Difference Regularization (Nikolaos Tziortziotis, Christos Dimitrakakis)....Pages 126-141
Discovery of Causal Models that Contain Latent Variables Through Bayesian Scoring of Independence Constraints (Fattaneh Jabbari, Joseph Ramsey, Peter Spirtes, Gregory Cooper)....Pages 142-157
Labeled DBN Learning with Community Structure Knowledge (E. Auclair, N. Peyrard, R. Sabbadin)....Pages 158-174
Multi-view Generative Adversarial Networks (Mickaël Chen, Ludovic Denoyer)....Pages 175-188
Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models (Sophie Burkhardt, Stefan Kramer)....Pages 189-204
PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach (Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini)....Pages 205-221
Partial Device Fingerprints (Michael Ciere, Carlos Gañán, Michel van Eeten)....Pages 222-237
Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies (Guoxi Zhang, Tomoharu Iwata, Hisashi Kashima)....Pages 238-250
Front Matter ....Pages 251-251
A Regularization Method with Inference of Trust and Distrust in Recommender Systems (Dimitrios Rafailidis, Fabio Crestani)....Pages 253-268
A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations (M. Tavakol, U. Brefeld)....Pages 269-284
Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation (Shoujin Wang, Liang Hu, Longbing Cao)....Pages 285-302
Front Matter ....Pages 303-303
Adaptive Skip-Train Structured Regression for Temporal Networks (Martin Pavlovski, Fang Zhou, Ivan Stojkovic, Ljupco Kocarev, Zoran Obradovic)....Pages 305-321
ALADIN: A New Approach for Drug–Target Interaction Prediction (Krisztian Buza, Ladislav Peska)....Pages 322-337
Co-Regularised Support Vector Regression (Katrin Ullrich, Michael Kamp, Thomas Gärtner, Martin Vogt, Stefan Wrobel)....Pages 338-354
Online Regression with Controlled Label Noise Rate (Edward Moroshko, Koby Crammer)....Pages 355-369
Front Matter ....Pages 371-371
Generalized Inverse Reinforcement Learning with Linearly Solvable MDP (Masahiro Kohjima, Tatsushi Matsubayashi, Hiroshi Sawada)....Pages 373-388
Max K-Armed Bandit: On the ExtremeHunter Algorithm and Beyond (Mastane Achab, Stephan Clémençon, Aurélien Garivier, Anne Sabourin, Claire Vernade)....Pages 389-404
Variational Thompson Sampling for Relational Recurrent Bandits (Sylvain Lamprier, Thibault Gisselbrecht, Patrick Gallinari)....Pages 405-421
Front Matter ....Pages 423-423
Explaining Deviating Subsets Through Explanation Networks (Antti Ukkonen, Vladimir Dzyuba, Matthijs van Leeuwen)....Pages 425-441
Flash Points: Discovering Exceptional Pairwise Behaviors in Vote or Rating Data (Adnene Belfodil, Sylvie Cazalens, Philippe Lamarre, Marc Plantevit)....Pages 442-458
Front Matter ....Pages 459-459
A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching (F. Höppner, T. Sobek)....Pages 461-477
Arbitrated Ensemble for Time Series Forecasting (Vítor Cerqueira, Luís Torgo, Fábio Pinto, Carlos Soares)....Pages 478-494
Cost Sensitive Time-Series Classification (Shoumik Roychoudhury, Mohamed Ghalwash, Zoran Obradovic)....Pages 495-511
Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams (Bartosz Krawczyk, Przemysław Skryjomski)....Pages 512-527
Efficient Temporal Kernels Between Feature Sets for Time Series Classification (Romain Tavenard, Simon Malinowski, Laetitia Chapel, Adeline Bailly, Heider Sanchez, Benjamin Bustos)....Pages 528-543
Forecasting and Granger Modelling with Non-linear Dynamical Dependencies (Magda Gregorová, Alexandros Kalousis, Stéphane Marchand-Maillet)....Pages 544-558
Learning TSK Fuzzy Rules from Data Streams (Ammar Shaker, Waleri Heldt, Eyke Hüllermeier)....Pages 559-574
Non-parametric Online AUC Maximization (Balázs Szörényi, Snir Cohen, Shie Mannor)....Pages 575-590
On-Line Dynamic Time Warping for Streaming Time Series (Izaskun Oregi, Aritz Pérez, Javier Del Ser, José A. Lozano)....Pages 591-605
PowerCast: Mining and Forecasting Power Grid Sequences (Hyun Ah Song, Bryan Hooi, Marko Jereminov, Amritanshu Pandey, Larry Pileggi, Christos Faloutsos)....Pages 606-621
UAPD: Predicting Urban Anomalies from Spatial-Temporal Data (Xian Wu, Yuxiao Dong, Chao Huang, Jian Xu, Dong Wang, Nitesh V. Chawla)....Pages 622-638
Front Matter ....Pages 639-639
LKT-FM: A Novel Rating Pattern Transfer Model for Improving Non-overlapping Cross-Domain Collaborative Filtering (Yizhou Zang, Xiaohua Hu)....Pages 641-656
Distributed Multi-task Learning for Sensor Network (Jiyi Li, Tomohiro Arai, Yukino Baba, Hisashi Kashima, Shotaro Miwa)....Pages 657-672
Learning Task Clusters via Sparsity Grouped Multitask Learning (Meghana Kshirsagar, Eunho Yang, Aurélie C. Lozano)....Pages 673-689
Lifelong Learning with Gaussian Processes (Christopher Clingerman, Eric Eaton)....Pages 690-704
Personalized Tag Recommendation for Images Using Deep Transfer Learning (Hanh T. H. Nguyen, Martin Wistuba, Lars Schmidt-Thieme)....Pages 705-720
Ranking Based Multitask Learning of Scoring Functions (Ivan Stojkovic, Mohamed Ghalwash, Zoran Obradovic)....Pages 721-736
Theoretical Analysis of Domain Adaptation with Optimal Transport (Ievgen Redko, Amaury Habrard, Marc Sebban)....Pages 737-753
TSP: Learning Task-Specific Pivots for Unsupervised Domain Adaptation (Xia Cui, Frans Coenen, Danushka Bollegala)....Pages 754-771
Front Matter ....Pages 773-773
\(k^2\)-means for Fast and Accurate Large Scale Clustering (Eirikur Agustsson, Radu Timofte, Luc Van Gool)....Pages 775-791
A Simple Exponential Family Framework for Zero-Shot Learning (Vinay Kumar Verma, Piyush Rai)....Pages 792-808
DeepCluster: A General Clustering Framework Based on Deep Learning (Kai Tian, Shuigeng Zhou, Jihong Guan)....Pages 809-825
Multi-view Spectral Clustering on Conflicting Views (Xiao He, Limin Li, Damian Roqueiro, Karsten Borgwardt)....Pages 826-842
Pivot-Based Distributed K-Nearest Neighbor Mining (Caitlin Kuhlman, Yizhou Yan, Lei Cao, Elke Rundensteiner)....Pages 843-860
Back Matter ....Pages 861-866