دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Huixiao Hong
سری: Computational Methods in Engineering & the Sciences
ISBN (شابک) : 3031207297, 9783031207297
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 653
[654]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Machine Learning and Deep Learning in Computational Toxicology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین و یادگیری عمیق در سم شناسی محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعهای از یادگیری ماشین و الگوریتمهای
یادگیری عمیق، روشها، معماریها و ابزارهای نرمافزاری است که
توسعه یافته و به طور گسترده در سمشناسی پیشبینیکننده به کار
گرفته شدهاند. مجموعه ای از برنامه های کاربردی اخیر را با
استفاده از تکنیک های یادگیری ماشینی پیشرفته و یادگیری عمیق در
تجزیه و تحلیل انواع داده های نقطه پایانی سم شناسی گردآوری می
کند. مطالب، الگوریتمها، روشها و ابزارهای نرمافزاری یادگیری
ماشین و یادگیری عمیق را نشان میدهد و کاربردهای یادگیری ماشین و
یادگیری عمیق در سمشناسی پیشبینیکننده را با متن، شکلها و
جداول آموزنده که توسط متخصصان لایه اول ارائه شدهاند، خلاصه
میکند. یکی از ویژگیهای اصلی، مطالعات موردی کاربردهای یادگیری
ماشینی و یادگیری عمیق در تحقیقات سمشناسی است که به عنوان
نمونهای برای خوانندگان برای یادگیری نحوه استفاده از یادگیری
ماشین و تکنیکهای یادگیری عمیق در سمشناسی پیشبینیکننده است.
انتظار می رود این کتاب مرجعی برای کاربردهای عملی یادگیری ماشین
و یادگیری عمیق در تحقیقات سم شناسی باشد. این یک راهنمای مفید
برای سم شناسان، شیمیدانان، محققان کشف و توسعه دارو، دانشمندان
نظارتی، بازبینان دولتی و دانشجویان فارغ التحصیل است. مزیت اصلی
برای خوانندگان درک تکنیک های یادگیری ماشینی و یادگیری عمیق و به
دست آوردن روش های عملی برای استفاده از یادگیری ماشین و یادگیری
عمیق در سم شناسی پیش بینی است.
This book is a collection of machine learning and deep
learning algorithms, methods, architectures, and software tools
that have been developed and widely applied in predictive
toxicology. It compiles a set of recent applications using
state-of-the-art machine learning and deep learning techniques
in analysis of a variety of toxicological endpoint data. The
contents illustrate those machine learning and deep learning
algorithms, methods, and software tools and summarise the
applications of machine learning and deep learning in
predictive toxicology with informative text, figures, and
tables that are contributed by the first tier of experts. One
of the major features is the case studies of applications of
machine learning and deep learning in toxicological research
that serve as examples for readers to learn how to apply
machine learning and deep learning techniques in predictive
toxicology. This book is expected to provide a reference for
practical applications of machine learning and deep learning in
toxicological research. It is a useful guide for toxicologists,
chemists, drug discovery and development researchers,
regulatory scientists, government reviewers, and graduate
students. The main benefit for the readers is understanding the
widely used machine learning and deep learning techniques and
gaining practical procedures for applying machine learning and
deep learning in predictive toxicology.
Preface Contents Editor and Contributors 1 Machine Learning and Deep Learning Promote Computational Toxicology for Risk Assessment of Chemicals 1.1 Risk Assessment of Chemicals 1.2 Computational Toxicology 1.3 Machine Learning in Computational Toxicology 1.4 Deep Learning in Toxicology 1.5 Perspectives References Part I Machine Learning and Deep Learning Methods for Computational Toxicology 2 Assessment of the Xenobiotics Toxicity Taking into Account Their Metabolism 2.1 Introduction 2.2 Computational Methods of Studying Metabolism 2.2.1 Databases Containing Xenobiotic Metabolism Information 2.2.2 Descriptors/Notation Used for Metabolism Prediction 2.2.3 Prediction of Biotransformation Sites 2.2.4 Generation of the Structures of Probable Metabolites 2.2.5 Reactive Metabolite Formation Prediction 2.3 Integral Computational Assessment of Xenobiotic Toxicity 2.4 Future Directions in Xenobiotic Toxicity Assessment References 3 Emerging Machine Learning Techniques in Predicting Adverse Drug Reactions 3.1 Introduction 3.2 Feature Generation for Machine Learning 3.2.1 Structure-Based Features 3.2.2 Interactions and Associations 3.2.3 Data Sources for Feature Generation 3.3 Conventional Methods for ADR Prediction 3.4 Emerging Methods for ADR Prediction 3.4.1 Molecule-Based Methods 3.4.2 Similarity-Based Methods 3.4.3 Network- and Graph-Based Methods 3.5 ADR Prediction Future Directions References 4 Drug Effect Deep Learner Based on Graphical Convolutional Network 4.1 Introduction 4.2 Results 4.2.1 Gene Vector: Generation and Evaluation 4.2.2 Molecular Feature and Vector Generation 4.2.3 Cell Vector: Generation and Evaluation 4.2.4 Deep Drug Effect Predictor: Training and Validation 4.2.5 Application of DDEP to Predict the Effects of Anti-cancer Drugs Against Breast Adenocarcinoma 4.2.6 Insights into Drug Classification 4.3 Discussion 4.4 Methods 4.4.1 Capture Contextual Information of Genes from Their Interaction Networks 4.4.2 Generating Gene Vectors and Cell Vectors 4.4.3 GCN-Based Pre-models 4.4.4 Deep Drug Effect Predictor References 5 AOP-Based Machine Learning for Toxicity Prediction 5.1 Introduction 5.2 Research Status and Existing Problems for ML 5.3 General Overview of AOP 5.3.1 The Generation of AOP 5.3.2 The Framework of AOP 5.3.3 Qualitative AOP and Quantitative AOP 5.4 Research Progress of Toxicity Prediction by AOP and ML 5.5 Perspectives and Future Prospects of AOP References 6 Graph Kernel Learning for Predictive Toxicity Models 6.1 Introduction 6.2 A Brief Introduction of Graph Concepts 6.2.1 Graph Theory Definitions 6.2.2 Graph Kernels Fundamentals 6.3 Graph Kernel Learning for Molecular Representations 6.4 Applications of GKL Methods on Chemical Toxicity 6.4.1 Benchmark Data Sets and Methods About Chemical Toxicity 6.4.2 Applications of Graph Kernel-Based Methods 6.4.3 Applications of Graph Neural Networks 6.4.4 Applications of Learnable Graph Embeddings 6.4.5 Applications of Learnable Graph Kernels 6.5 Challenges and Perspectives of Graph Kernel Learning on Toxicity-Related Problems 6.6 Conclusion References 7 Optimize and Strengthen Machine Learning Models Based on in Vitro Assays with Mechanistic Knowledge and Real-World Data 7.1 Introduction 7.2 Incorporating AOPs to Construct Parsimonious Machine Learning Models 7.2.1 AOPs and AOP Networks 7.2.2 Using AOPs to Facilitate Building Parsimonious Machine Learning Models 7.3 Utilize Spontaneous Reporting Databases to Corroborate Findings of Machine Learning Models 7.3.1 Statistical Methods for Safety Signal Mining Using Spontaneous Reporting Databases 7.3.2 Obtain Data from FAERS 7.3.3 Poisson Regression Model for Report Counts 7.3.4 Incorporating Host Factors in Testing 7.3.5 Utilize FAERS Data to Corroborate Models Based on in Vitro Assays 7.4 Conclusions References 8 Multitask Learning for Quantitative Structure–Activity Relationships: A Tutorial 8.1 Introduction 8.2 QSAR and Multitask Learning 8.2.1 Definition of MTL Problem 8.2.2 Task Relatedness 8.2.3 Multitask Neural Networks 8.2.4 Performance Evaluation 8.3 Case Study: NURA Dataset 8.4 Hands-On Tutorial 8.4.1 Getting Started 8.5 Conclusions References Part II Tools and Approaches Facilitating Machine Learning and Deep Learning Methods in Computational Toxicology 9 Isalos Predictive Analytics Platform: Cheminformatics, Nanoinformatics, and Data Mining Applications 9.1 Introduction 9.2 Isalos Platform 9.3 Data Input 9.4 Data Transformation 9.4.1 Normalizers 9.4.2 Data Manipulation 9.4.3 Dataset Splitting 9.5 Analytics 9.5.1 Modelling Methodologies 9.5.2 Feature Selection 9.5.3 Existing Model Utilization 9.6 Statistics 9.6.1 Domain—APD 9.6.2 Model Metrics 9.7 Development of Predictive Models with Isalos 9.7.1 Ecotox Models 9.7.2 Molecular, Size, and Surface-Based Safe by Design (MS3bD, MSzeta) Model 9.7.3 Cell Viability Model 9.8 Conclusions References 10 ED Profiler: Machine Learning Tool for Screening Potential Endocrine-Disrupting Chemicals 10.1 Introduction 10.2 Materials and Methods 10.2.1 Data Sets 10.2.2 Molecular Descriptor Calculation 10.2.3 (Q)SAR Modeling 10.2.4 Applicability Domain and Reliability Evaluation 10.2.5 Software Development 10.3 Development of Predictive Models 10.3.1 Proposed Predictive Model System 10.3.2 Development of SAR Models 10.3.3 Development of QSAR Models 10.4 Development of Software 10.4.1 Features and Overview of the Software 10.4.2 Examples 10.5 Conclusions References 11 Quantitative Target-specific Toxicity Prediction Modeling (QTTPM): Coupling Machine Learning with Dynamic Protein–Ligand Interaction Descriptors (DyPLIDs) to Predict Androgen Receptor-mediated Toxicity 11.1 Introduction 11.2 Materials and Methods 11.2.1 Study Design 11.2.2 Dataset Curation, Preprocessing, and Chemical Preparation 11.2.3 Molecular Docking 11.2.4 Molecular Dynamics (MD) Simulations 11.2.5 Dynamic Protein–Ligand Interaction Descriptors (DyPLIDs) Calculation 11.2.6 Feature Selection: Down-Selection of Descriptors 11.2.7 Dataset Splitting 11.2.8 Machine Learning for Quantitative AR Activity Prediction Modeling 11.3 Results and Discussion 11.3.1 Conformational Ensemble of AR-Ligand Interactions 11.3.2 Comparison of 6 ns Versus 100 ns Simulations 11.3.3 Fingerprint Chemical Diversity 11.3.4 Predictive QSAR Model 11.3.5 Feature Importance 11.3.6 Model Limitation 11.4 Conclusion References 12 Mold2 Descriptors Facilitate Development of Machine Learning and Deep Learning Models for Predicting Toxicity of Chemicals 12.1 Introduction 12.2 Mold2 Descriptors 12.2.1 The Descriptors 12.2.2 The Software 12.3 Information Content of Mold2 Descriptors 12.4 Applications in Machine Learning 12.4.1 Predicting Estrogenic Activity 12.4.2 Predicting Androgenic Activity 12.4.3 Predicting Kinase Inhibitors 12.5 Applications in Deep Learning 12.5.1 Predicting DILI 12.5.2 Predicting Drug-Likeness 12.6 Summary References 13 Applicability Domain Characterization for Machine Learning QSAR Models 13.1 An Outline of Quantitative Structure–Activity Relationship (QSAR) Models 13.1.1 Core Elements of QSAR Models 13.1.2 Validity of QSAR Models 13.2 Concepts and Understandings of AD 13.2.1 Physicochemical, Structural, Mechanistic, and Metabolic Aspects 13.2.2 Interpolation, Distance/Similarity, and Boundary 13.2.3 AD Metrics Evaluating Prediction Performance on Individual Chemicals 13.3 AD Characterization Methods 13.3.1 Descriptor Domain 13.3.2 Structural (Similarity) Domain 13.3.3 Clustering-Based Methods 13.3.4 First-Class AD Metrics 13.3.5 Second-Class AD Metrics 13.3.6 Visualization of AD 13.4 Impacts on the QSAR Modeling Scenario from Machine Learning Algorithms 13.5 Toward Broader AD for Machine Learning QSAR Models References 14 Controlling for Confounding in Complex Survey Machine Learning Models to Assess Drug Safety and Risk 14.1 Introduction and Background 14.2 The Propensity Score Method 14.3 Software and Assessment of Balance 14.4 A Drug Safety Model for Prescription NSAIDs 14.5 Propensity Score Weighting 14.5.1 Adjusting for Confounding with Propensity Score ATE Weighting 14.5.2 Adjusting for Confounding with Propensity Score ATT Weighting 14.6 Propensity Score Stratification 14.6.1 Adjusting for Confounding with Propensity Score Stratification 14.7 Conclusion References 15 Multivariate Curve Resolution for Analysis of Heterogeneous System in Toxicogenomics 15.1 Introduction 15.2 Basic Conceptions and Application Scenarios 15.2.1 The Definition of MCR in Heterogeneous Systems 15.2.2 The Ultimate Goal of Applying MCR in TGx 15.3 Method Categories 15.3.1 Determining or Estimating k 15.3.2 Determining or Estimating E and W 15.3.3 Jointly Utilization and Alternate Estimation 15.4 Available Resources 15.4.1 Databases of TGx Data 15.4.2 Functions of MCR 15.4.3 Tools of Deconvolution by Using MCR 15.5 Perspective and Future Directions References Part III Machine Learning and Deep Learning for Chemical Toxicity Prediction 16 The Use of Machine Learning to Support Drug Safety Prediction 16.1 Introduction 16.2 Chemical-Based Safety Machine Learning 16.2.1 Overview 16.2.2 Databases 16.2.3 Machine Learning Algorithms 16.3 Case Study—Assessment of Pharmaceutical Impurities 16.4 Conclusions References 17 Machine Learning-Based QSAR Models and Structural Alerts for Prediction of Mitochondrial Dysfunction 17.1 Introduction 17.2 Datasets and Methods 17.2.1 Data on Mitochondrial Dysfunction 17.2.2 Machine Learning Methods Used for Model Construction 17.2.3 Model Evaluation 17.2.4 Methods to Identify Structural Alerts 17.3 Mitochondrial Dysfunction QSAR Models and Structural Alerts 17.3.1 Mitochondrial Dysfunction QSAR Models 17.3.2 Structural Alerts for Mitochondrial Dysfunction 17.4 Conclusions and Future Directions References 18 Machine Learning and Deep Learning Applications to Evaluate Mutagenicity 18.1 In Silico Methods to Predict Bacterial Mutagenicity 18.2 Data for Modeling Mutagenicity 18.3 Traditional Machine Learning for Mutagenicity Prediction 18.4 Deep Learning for Mutagenicity Prediction 18.5 Discussion and Perspective References 19 Modeling Tox21 Data for Toxicity Prediction and Mechanism Deconvolution 19.1 Introduction 19.2 Tox21 10K Compound Library and Assay Data 19.2.1 Tox21 Compound Collection 19.2.2 Tox21 qHTS Process 19.3 Modeling Tox21 Data for Toxicity Prediction 19.3.1 Multiple Species In Vivo Toxicity 19.3.2 Human In Vivo Toxicity 19.3.3 In Vitro Toxicity 19.4 Toxicity Pathways and Mechanisms 19.5 Conclusions and Moving Forward References 20 Identification of Structural Alerts by Machine Learning and Their Applications in Toxicology 20.1 Introduction 20.2 Approaches for Identification of Structural Alerts 20.2.1 Expert Systems 20.2.2 Computational Approaches 20.2.3 Comparison of Data-Driven Structural Alerts with Expert Systems 20.3 Application of Structural Alerts in Toxicology 20.3.1 Toxicity Prediction 20.3.2 Explanation of QSAR Models 20.3.3 Molecular Optimization 20.3.4 Exploring New Mechanisms 20.4 Perspectives and Outlook References 21 Machine Learning in Prediction of Nanotoxicology 21.1 Introduction 21.2 Toxicity of Nanomaterials 21.2.1 Toxicity of Carbon Nanomaterials 21.2.2 Toxicity of Transition Metal Dichalcogenides 21.2.3 Toxicity of MOFs 21.3 Prediction of Nanotoxicity by Machine Learning 21.3.1 Prediction of Carbon Nanomaterials Toxicity by Machine Learning 21.3.2 Prediction of Nanometal Toxicity by Machine Learning 21.3.3 Prediction of Nanometal Oxide Toxicity by Machine Learning 21.3.4 Prediction of Other Nanomaterials Toxicity by Machine Learning 21.4 Future Directions of Machine Learning in Nanotoxicology Prediction References 22 Machine Learning for Predicting Organ Toxicity 22.1 Introduction 22.2 Machine Learning Algorithms 22.2.1 Classification and Regression Tree 22.2.2 k-Nearest Neighbors (kNN) 22.2.3 Naïve Bayes (NB) 22.2.4 Random Forest 22.2.5 Support Vector Machine 22.3 Organ Toxicity Prediction 22.3.1 Liver Toxicity 22.3.2 Kidney Toxicity 22.3.3 Heart Toxicity 22.4 A Case Study for Organ Toxicity Prediction 22.4.1 Data Sources 22.4.2 Supervised Machine Learning 22.4.3 Results 22.5 Summary References Part IV The Progress of Machine Learning and Deep Learning in New Areas 23 Computational Modeling for the Prediction of Hepatotoxicity Caused by Drugs and Chemicals 23.1 Introduction 23.2 Machine Learning Methods for Predicting Hepatotoxicity 23.2.1 Toxicity Dataset for Machine Learning 23.2.2 Metrics for Evaluating Model Performance 23.2.3 Machine Learning Algorithms 23.3 A Case Study: Machine Learning Modeling for Hepatotoxicity Prediction 23.3.1 Data Sources 23.3.2 Modeling by Machine Learning Approaches 23.3.3 Results 23.4 Summary and Future Direction References 24 Artificial Intelligence for Risk Assessment of Cancer Therapy-Related Cardiotoxicity and Precision Cardio-Oncology 24.1 Introduction 24.2 Methods and Materials 24.2.1 Data Resources 24.2.2 Molecular Feature and Vector Generation 24.2.3 Defining Biological Endpoints and Clinical Outcomes 24.2.4 AI/ML Algorithm and Model Selection 24.2.5 Evaluating Model Performance 24.3 Variable Network Construction 24.4 Case Studies 24.4.1 In Silico Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers 24.4.2 Machine Learning-Based Risk Assessment for Cancer Therapy-Related Cardiac Dysfunction in 4300 Longitudinal Oncology Patients 24.4.3 Cardiac Risk Stratification in Cancer Patients: A Longitudinal Patient-Patient Network Analysis 24.5 Future Directions and Conclusion References 25 Deep Learning Model for Prediction of Compound Activities Over a Panel of Major Toxicity-Related Proteins 25.1 Introduction 25.2 Methods 25.2.1 Dataset 25.2.2 Chemical Diversity Analysis 25.2.3 Prediction Models 25.2.4 Evaluation Metrics 25.3 Results and Discussion 25.3.1 Data Collection and Analysis 25.3.2 Drug and Target Representations Selection 25.3.3 Model Performance 25.3.4 Comparison with Conventional per Protein Models 25.3.5 External Validation 25.4 Conclusions References 26 Machine Learning for Analyzing Drug Safety in Electronic Health Records 26.1 Introduction 26.2 Drug Safety Problems to Solve with ML 26.2.1 Prescription Error 26.2.2 Medication Misuse 26.2.3 Drug-Drug Interactions 26.3 Recent Trends of NLP and ML Methods in Pharmacovigilance 26.3.1 The Existing of NLP Approaches 26.3.2 Machine Learning Methods 26.4 Discussions References 27 Powering Toxicogenomic Studies by Applying Machine Learning to Genomic Sequencing and Variant Detection 27.1 Introduction 27.2 Machine Learning in Genomic Variant Detections 27.2.1 Machine Learning Algorithms in Germline Variant Detection 27.2.2 Challenges in Somatic Mutation Calling 27.2.3 Machine Learning to Improve Accuracy of Somatic Mutation Detection 27.3 Training Data for Machine Learning-Based Variant Callers 27.4 Conclusion References 28 Machine Learning for Predicting Gas Adsorption Capacities of Metal Organic Framework 28.1 Introduction 28.2 Data Sources 28.3 Descriptors of MOFs 28.4 ML Algorithms 28.5 ML Models for Predicting Gas Adsorption of MOFs 28.5.1 ML Models for CH4 Adsorption 28.5.2 ML Models for H2 Adsorption 28.5.3 ML Models for CO2 Adsorption 28.5.4 ML Models for Xe/Kr Selective Adsorption 28.6 Conclusion Remarks and Future Perspective References