دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Uma N. Dulhare (editor), Khaleel Ahmad (editor), Khairol Amali Bin Ahmad (editor) سری: ISBN (شابک) : 1119654742, 9781119654742 ناشر: Wiley-Scrivener سال نشر: 2020 تعداد صفحات: 535 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 77 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین و داده های بزرگ: مفاهیم ، الگوریتم ها ، ابزارها و برنامه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در حال حاضر بسیاری از حوزه های کاربردی مختلف برای داده های بزرگ (BD) و یادگیری ماشین (ML) در حال بررسی هستند. این حوزههای کاربردی امیدوارکننده برای BD/ML عبارتند از سایتهای اجتماعی، موتورهای جستجو، سایتهای اشتراکگذاری چند رسانهای، سایتهای مختلف بورس اوراق بهادار، بازیهای آنلاین، سایتهای نظرسنجی آنلاین و سایتهای خبری مختلف و غیره. تا به امروز، موارد استفاده مختلف برای این حوزه کاربردی در حال تحقیق و توسعه است. برنامههای نرمافزاری در حال حاضر در تنظیمات مختلف از آموزش و پرورش برای کشف الگوهای پنهان مفید و اطلاعات دیگر مانند انتخابهای مشتری و روندهای بازار منتشر شده و استفاده میشوند که میتواند به سازمانها کمک کند تا تصمیمات تجاری آگاهانهتر و مشتریمدارتری بگیرند.
ترکیب BD با ML زمینههای کاربردی قدرتمند و عمدتاً ناشناختهای را فراهم میکند که انقلابی در عملکرد نظارت بر ویدیوها، خدمات رسانههای اجتماعی، فیلتر هرزنامه و بدافزار ایمیل، تشخیص تقلب آنلاین و غیره ایجاد میکند. نظارت مستمر و درک این اثرات از منظر ایمنی و اجتماعی بسیار مهم است.
از این رو، هدف اصلی این کتاب این است که محققان، توسعه دهندگان نرم افزار و دست اندرکاران، دانشگاهیان و دانشجویان موارد استفاده جدید و جدید را به نمایش بگذارند. برنامههای کاربردی، نتایج تحقیقات تجربی را از آزمایشهای کمی و کیفی کاربر محور این برنامههای کاربردی جدید ارائه میدهد و با ارائه الگوریتمهایی که میتوانند برای انجام تکنیکهای بین رشتهای مانند آمار آموزش داده شوند، یک انجمن گفتگو برای کشف آخرین روندها در کلان داده و یادگیری ماشین تسهیل میکند. جبر خطی و بهینهسازی و همچنین ایجاد سیستمهای خودکاری که میتوانند حجم زیادی از دادهها را با سرعت بالا برای پیشبینی یا تصمیمگیری بدون دخالت انسان غربال کنند.Currently many different application areas for Big Data (BD) and Machine Learning (ML) are being explored. These promising application areas for BD/ML are the social sites, search engines, multimedia sharing sites, various stock exchange sites, online gaming, online survey sites and various news sites, and so on. To date, various use-cases for this application area are being researched and developed. Software applications are already being published and used in various settings from education and training to discover useful hidden patterns and other information like customer choices and market trends that can help organizations make more informed and customer-oriented business decisions.
Combining BD with ML will provide powerful, largely unexplored application areas that will revolutionize practice in Videos Surveillance, Social Media Services, Email Spam and Malware Filtering, Online Fraud Detection, and so on. It is very important to continuously monitor and understand these effects from safety and societal point of view.
Hence, the main purpose of this book is for researchers, software developers and practitioners, academicians and students to showcase novel use-cases and applications, present empirical research results from user-centered qualitative and quantitative experiments of these new applications, and facilitate a discussion forum to explore the latest trends in big data and machine learning by providing algorithms which can be trained to perform interdisciplinary techniques such as statistics, linear algebra, and optimization and also create automated systems that can sift through large volumes of data at high speed to make predictions or decisions without human interventionCover Title Page Copyright Page Contents Preface Section 1: Theoretical Fundamentals Chapter 1 Mathematical Foundation 1.1 Concept of Linear Algebra 1.1.1 Introduction 1.1.2 Vector Spaces 1.1.3 Linear Combination 1.1.4 Linearly Dependent and Independent Vectors 1.1.5 Linear Span, Basis and Subspace 1.1.6 Linear Transformation (or Linear Map) 1.1.7 Matrix Representation of Linear Transformation 1.1.7.1 Transformation Matrix 1.1.8 Range and Null Space of Linear Transformation 1.1.9 Invertible Linear Transformation 1.2 Eigenvalues, Eigenvectors, and Eigendecomposition of a Matrix 1.2.1 Characteristics Polynomial 1.2.1.1 Some Results on Eigenvalue 1.2.2 Eigendecomposition [11] 1.3 Introduction to Calculus 1.3.1 Function 1.3.2 Limits of Functions 1.3.2.1 Some Properties of Limits 1.3.2.2 1nfinite Limits 1.3.2.3 Limits at Infinity 1.3.3 Continuous Functions and Discontinuous Functions 1.3.3.1 Discontinuous Functions 1.3.3.2 Properties of Continuous Function 1.3.4 Differentiation References Chapter 2 Theory of Probability 2.1 Introduction 2.1.1 Definition 2.1.1.1 Statistical Definition of Probability 2.1.1.2 Mathematical Definition of Probability 2.1.2 Some Basic Terms of Probability 2.1.2.1 Trial and Event 2.1.2.2 Exhaustive Events (Exhaustive Cases) 2.1.2.3 Mutually Exclusive Events 2.1.2.4 Equally Likely Events 2.1.2.5 Certain Event or Sure Event 2.1.2.6 Impossible Event or Null Event (.) 2.1.2.7 Sample Space 2.1.2.8 Permutation and Combination 2.1.2.9 Examples 2.2 Independence in Probability 2.2.1 Independent Events 2.2.2 Examples: Solve the Following Problems 2.3 Conditional Probability 2.3.1 Definition 2.3.2 Mutually Independent Events 2.3.3 Examples 2.4 Cumulative Distribution Function 2.4.1 Properties 2.4.2 Example 2.5 Baye’s Theorem 2.5.1 Theorem 2.5.1.1 Examples 2.6 Multivariate Gaussian Function 2.6.1 Definition 2.6.1.1 Univariate Gaussian (i.e., One Variable Gaussian) 2.6.1.2 Degenerate Univariate Gaussian 2.6.1.3 Multivariate Gaussian References Chapter 3 Correlation and Regression 3.1 Introduction 3.2 Correlation 3.2.1 Positive Correlation and Negative Correlation 3.2.2 Simple Correlation and Multiple Correlation 3.2.3 Partial Correlation and Total Correlation 3.2.4 Correlation Coefficient 3.3 Regression 3.3.1 Linear Regression 3.3.2 Logistic Regression 3.3.3 Polynomial Regression 3.3.4 Stepwise Regression 3.3.5 Ridge Regression 3.3.6 Lasso Regression 3.3.7 Elastic Net Regression 3.4 Conclusion References Section 2: Big Data and Pattern Recognition Chapter 4 Data Preprocess 4.1 Introduction 4.1.1 Need of Data Preprocessing 4.1.2 Main Tasks in Data Preprocessing 4.2 Data Cleaning 4.2.1 Missing Data 4.2.2 Noisy Data 4.3 Data Integration 4.3.1 χ2 Correlation Test 4.3.2 Correlation Coefficient Test 4.3.3 Covariance Test 4.4 Data Transformation 4.4.1 Normalization 4.4.2 Attribute Selection 4.4.3 Discretization 4.4.4 Concept Hierarchy Generation 4.5 Data Reduction 4.5.1 Data Cube Aggregation 4.5.2 Attribute Subset Selection 4.5.3 Numerosity Reduction 4.5.4 Dimensionality Reduction 4.6 Conclusion Acknowledgements References Chapter 5 Big Data 5.1 Introduction 5.2 Big Data Evaluation With Its Tools 5.3 Architecture of Big Data 5.3.1 Big Data Analytics Framework Workflow 5.4 Issues and Challenges 5.4.1 Volume 5.4.2 Variety of Data 5.4.3 Velocity 5.5 Big Data Analytics Tools 5.6 Big Data Use Cases 5.6.1 Banking and Finance 5.6.2 Fraud Detection 5.6.3 Customer Division and Personalized Marketing 5.6.4 Customer Support 5.6.5 Risk Management 5.6.6 Life Time Value Prediction 5.6.7 Cyber Security Analytics 5.6.8 Insurance Industry 5.6.9 Health Care Sector 5.6.9.1 Big Data Medical Decision Support 5.6.9.2 Big Data–Based Disorder Management 5.6.9.3 Big Data–Based Patient Monitoring and Control 5.6.9.4 Big Data–Based Human Routine Analytics 5.6.10 Internet of Things 5.6.11 Weather Forecasting 5.7 Where IoT Meets Big Data 5.7.1 IoT Platform 5.7.2 Sensors or Devices 5.7.3 Device Aggregators 5.7.4 IoT Gateway 5.7.5 Big Data Platform and Tools 5.8 Role of Machine Learning For Big Data and IoT 5.8.1 Typical Machine Learning Use Cases 5.9 Conclusion References Chapter 6 Pattern Recognition Concepts 6.1 Classifier 6.1.1 Introduction 6.1.2 Explanation-Based Learning 6.1.3 Isomorphism and Clique Method 6.1.4 Context-Dependent Classification 6.1.5 Summary 6.2 Feature Processing 6.2.1 Introduction 6.2.2 Detection and Extracting Edge With Boundary Line 6.2.3 Analyzing the Texture 6.2.4 Feature Mapping in Consecutive Moving Frame 6.2.5 Summary 6.3 Clustering 6.3.1 Introduction 6.3.2 Types of Clustering Algorithms 6.3.2.1 Dynamic Clustering Method 6.3.2.2 Model-Based Clustering 6.3.3 Application 6.3.4 Summary 6.4 Conclusion References Section 3: Machine Learning: Algorithms & Applications Chapter 7 Machine Learning 7.1 History and Purpose of Machine Learning 7.1.1 History of Machine Learning 7.1.1.1 What is Machine Learning? 7.1.1.2 When the Machine Learning is Needed? 7.1.2 Goals and Achievements in Machine Learning 7.1.3 Applications of Machine Learning 7.1.3.1 Practical Machine Learning Examples 7.1.4 Relation to Other Fields 7.1.4.1 Data Mining 7.1.4.2 Artificial Intelligence 7.1.4.3 Computational Statistics 7.1.4.4 Probability 7.1.5 Limitations of Machine Learning 7.2 Concept of Well-Defined Learning Problem 7.2.1 Concept Learning 7.2.1.1 Concept Representation 7.2.1.2 Instance Representation 7.2.1.3 The Inductive Learning Hypothesis 7.2.2 Concept Learning as Search 7.2.2.1 Concept Generality 7.3 General-to-Specific Ordering Over Hypotheses 7.3.1 Basic Concepts: Hypothesis, Generality 7.3.2 Structure of the Hypothesis Space 7.3.2.1 Hypothesis Notations 7.3.2.2 Hypothesis Evaluations 7.3.3 Ordering on Hypotheses: General to Specific 7.3.3.1 Most Specific Generalized 7.3.3.2 Most General Specialized 7.3.3.3 Generalization and Specialization Operators 7.3.4 Hypothesis Space Search by Find-S Algorithm 7.3.4.1 Properties of the Find-S Algorithm 7.3.4.2 Limitations of the Find-S Algorithm 7.4 Version Spaces and Candidate Elimination Algorithm 7.4.1 Representing Version Spaces 7.4.1.1 General Boundary 7.4.1.2 Specific Boundary 7.4.2 Version Space as Search Strategy 7.4.3 The List-Eliminate Method 7.4.4 The Candidate-Elimination Method 7.4.4.1 Example 7.4.4.2 Convergence of Candidate-Elimination Method 7.4.4.3 Inductive Bias for Candidate-Elimination 7.5 Concepts of Machine Learning Algorithm 7.5.1 Types of Learning Algorithms 7.5.1.1 Incremental vs. Batch Learning Algorithms 7.5.1.2 Offline vs. Online Learning Algorithms 7.5.1.3 Inductive vs. Deductive Learning Algorithms 7.5.2 A Framework for Machine Learning Algorithms 7.5.2.1 Training Data 7.5.2.2 Target Function 7.5.2.3 Construction Model 7.5.2.4 Evaluation 7.5.3 Types of Machine Learning Algorithms 7.5.3.1 Supervised Learning 7.5.3.2 Unsupervised Learning 7.5.3.3 Semi-Supervised Learning 7.5.3.4 Reinforcement Learning 7.5.3.5 Deep Learning 7.5.4 Types of Machine Learning Problems 7.5.4.1 Classification 7.5.4.2 Clustering 7.5.4.3 Optimization 7.5.4.4 Regression Conclusion References Chapter 8 Performance of Supervised Learning Algorithms on Multi-Variate Datasets 8.1 Introduction 8.2 Supervised Learning Algorithms 8.2.1 Datasets and Experimental Setup 8.2.2 Data Treatment/Preprocessing 8.3 Classification 8.3.1 Support Vector Machines (SVM) 8.3.2 Naïve Bayes (NB) Algorithm 8.3.3 Bayesian Network (BN) 8.3.4 Hidden Markov Model (HMM) 8.3.5 K-Nearest Neighbour (KNN) 8.3.6 Training Time 8.4 Neural Network 8.4.1 Artificial Neural Networks Architecture 8.4.2 Application Areas 8.4.3 Artificial Neural Networks and Time Series 8.5 Comparisons and Discussions 8.5.1 Comparison of Classification Accuracy 8.5.2 Forecasting Efficiency Comparison 8.5.3 Recurrent Neural Network (RNN) 8.5.4 Backpropagation Neural Network (BPNN) 8.5.5 General Regression Neural Network 8.6 Summary and Conclusion References Chapter 9 Unsupervised Learning 9.1 Introduction 9.2 Related Work 9.3 Unsupervised Learning Algorithms 9.4 Classification of Unsupervised Learning Algorithms 9.4.1 Hierarchical Methods 9.4.2 Partitioning Methods 9.4.3 Density-Based Methods 9.4.4 Grid-Based Methods 9.4.5 Constraint-Based Clustering 9.5 Unsupervised Learning Algorithms in ML 9.5.1 Parametric Algorithms 9.5.2 Non-Parametric Algorithms 9.5.3 Dirichlet Process Mixture Model 9.5.4 X-Means 9.6 Summary and Conclusions References Chapter 10 Semi-Supervised Learning 10.1 Introduction 10.1.1 Semi-Supervised Learning 10.1.2 Comparison With Other Paradigms 10.2 Training Models 10.2.1 Self-Training 10.2.2 Co-Training 10.3 Generative Models—Introduction 10.3.1 Image Classification 10.3.2 Text Categorization 10.3.3 Speech Recognition 10.3.4 Baum-Welch Algorithm 10.4 S3VMs 10.5 Graph-Based Algorithms 10.5.1 Mincut 10.5.2 Harmonic 10.5.3 Manifold Regularization 10.6 Multiview Learning 10.7 Conclusion References Chapter 11 Reinforcement Learning 11.1 Introduction: Reinforcement Learning 11.1.1 Elements of Reinforcement Learning 11.2 Model-Free RL 11.2.1 Q-Learning 11.2.2 R-Learning 11.3 Model-Based RL 11.3.1 SARSA Learning 11.3.2 Dyna-Q Learning 11.3.3 Temporal Difference 11.3.3.1 TD(0) Algorithm 11.3.3.2 TD(1) Algorithm 11.3.3.3 TD(.) Algorithm 11.3.4 Monte Carlo Method 11.3.4.1 Monte Carlo Reinforcement Learning 11.3.4.2 Monte Carlo Policy Evaluation 11.3.4.3 Monte Carlo Policy Improvement 11.4 Conclusion References Chapter 12 Application of Big Data and Machine Learning 12.1 Introduction 12.2 Motivation 12.3 Related Work 12.4 Application of Big Data and ML 12.4.1 Healthcare 12.4.2 Banking and Insurance 12.4.3 Transportation 12.4.4 Media and Entertainment 12.4.5 Education 12.4.6 Ecosystem Conservation 12.4.7 Manufacturing 12.4.8 Agriculture 12.5 Issues and Challenges 12.6 Conclusion References Section 4: Machine Learning’s Next Frontier Chapter 13 Transfer Learning 13.1 Introduction 13.1.1 Motivation, Definition, and Representation 13.2 Traditional Learning vs. Transfer Learning 13.3 Key Takeaways: Functionality 13.4 Transfer Learning Methodologies 13.5 Inductive Transfer Learning 13.6 Unsupervised Transfer Learning 13.7 Transductive Transfer Learning 13.8 Categories in Transfer Learning 13.9 Instance Transfer 13.10 Feature Representation Transfer 13.11 Parameter Transfer 13.12 Relational Knowledge Transfer 13.13 Relationship With Deep Learning 13.13.1 Transfer Learning in Deep Learning 13.13.2 Types of Deep Transfer Learning 13.13.3 Adaptation of Domain 13.13.4 Domain Confusion 13.13.5 Multitask Learning 13.13.6 One-Shot Learning 13.13.7 Zero-Shot Learning 13.14 Applications: Allied Classical Problems 13.14.1 Transfer Learning for Natural Language Processing 13.14.2 Transfer learning for Computer Vision 13.14.3 Transfer Learning for Audio and Speech 13.15 Further Advancements and Conclusion References Section 5: Hands-On and Case Study Chapter 14 Hands on MAHOUT—Machine Learning Tool 14.1 Introduction to Mahout 14.1.1 Features 14.1.2 Advantages 14.1.3 Disadvantages 14.1.4 Application 14.2 Installation Steps of Apache Mahout Using Cloudera 14.2.1 Installation of VMware Workstation 14.2.2 Installation of Cloudera 14.2.3 Installation of Mahout 14.2.4 Installation of Maven 14.2.5 Testing Mahout 14.3 Installation Steps of Apache Mahout Using Windows 10 14.3.1 Installation of Java 14.3.2 Installation of Hadoop 14.3.3 Installation of Mahout 14.3.4 Installation of Maven 14.3.5 Path Setting 14.3.6 Hadoop Configuration 14.4 Installation Steps of Apache Mahout Using Eclipse 14.4.1 Eclipse Installation 14.4.2 Installation of Maven Through Eclipse 14.4.3 Maven Setup for Mahout Configuration 14.4.4 Building the Path- 14.4.5 Modifying the pom.xml File 14.4.6 Creating the Data File 14.4.7 Adding External Jar Files 14.4.8 Creating the New Package and Classes 14.4.9 Result 14.5 Mahout Algorithms 14.5.1 Classification 14.5.2 Clustering [36, 38, 39] 14.5.3 Recommendation 14.6 Conclusion References Chapter 15 Hands-On H2O Machine Learning Tool 15.1 Introduction 15.2 Installation 15.2.1 The Process of Installation 15.3 Interfaces 15.4 Programming Fundamentals 15.4.1 Data Manipulation 15.4.1.1 Data Types 15.4.1.2 Data Import 15.4.2 Models 15.4.2.1 Model Training 15.4.3 Discovering Aspects 15.4.3.1 Converting Data Frames 15.4.4 H2O Cluster Actions 15.4.4.1 H2O Key Value Retrieval 15.4.4.2 H2O Cluster Connection 15.4.5 Commands 15.4.5.1 Cluster Information 15.4.5.2 General Data Operations 15.4.5.3 String Manipulation Commands 15.5 Machine Learning in H2O 15.5.1 Supervised Learning 15.5.2 Unsupervised Learning 15.6 Applications of H2O 15.6.1 Deep Learning 15.6.2 K-Fold Cross-Authentication or Validation 15.6.3 Stacked Ensemble and Random Forest Estimator 15.7 Conclusion References Chapter 16 Case Study: Intrusion Detection System Using Machine Learning 16.1 Introduction 16.1.1 Components Used to Design the Scenario Include 16.1.1.1 Black Hole 16.1.1.2 Intrusion Detection System 16.1.1.3 Components Used From MATLAB Simulator 16.2 System Design 16.2.1 Three Sub-Network Architecture 16.2.2 Using Classifiers of MATLAB 16.3 Existing Proposals 16.4 Approaches Used in Designing the Scenario 16.4.1 Algorithm Used in QualNet 16.4.2 Algorithm Applied in MATLAB 16.5 Result Analysis 16.5.1 Results From QualNet 16.5.1.1 Deployment 16.5.1.2 Detection 16.5.1.3 Avoidance 16.5.1.4 Validation of Conclusion 16.5.2 Applying Results to MATLAB 16.5.2.1 K-Nearest Neighbor 16.5.2.2 SVM 16.5.2.3 Decision Tree 16.5.2.4 Naïve Bayes 16.5.2.5 Neural Network 16.6 Conclusion References Chapter 17 Inclusion of Security Features for Implications of Electronic Governance Activities 17.1 Introduction 17.2 Objective of E-Governance 17.3 Role of Identity in E-Governance 17.3.1 Identity 17.3.2 Identity Management and its Buoyancy Against Identity Theft in E-Governance 17.4 Status of E-Governance in Other Countries 17.4.1 E-Governance Services in Other Countries Like Australia and South Africa 17.4.2 Adaptation of Processes and Methodology for Developing Countries 17.4.3 Different Programs Related to E-Governance 17.5 Pros and Cons of E-Governance 17.6 Challenges of E-Governance in Machine Learning 17.7 Conclusion References Index EULA